
Welcome to the June Edition 
of the 2025 M&R Seminar Series



NOTES FOR SEMINAR ATTENDEES

• Remote attendees’ microphones are muted at entry to minimize background
noise.
For attendees in the auditorium, please silence your phones.

• A question and answer (Q/A) session will follow the presentation.

• For remote attendees, please use “Chat” only to type questions for the presenter.
For other issues, please email Pam to SlabyP@mwrd.org.
For attendees in the auditorium, please raise your hand and wait for the
microphone to ask a verbal question during the Q/A session.

• The presentation slides will be posted on the MWRD website after the seminar.

• This seminar has been approved by the Engineering Society of Illinois (ESI) for one
PDH and pending approval by the IEPA for one TCH. Certificates will be issued only
to participants who attend the entire presentation. For PDH certificate seekers,
please complete a brief course evaluation and submit it.



Jeffrey Sparks, Ph.D., P.E., CDT
Director of Digital Water

Hampton Road Sanitation District
Newport News, Virginia

Dr. Sparks is a licensed Professional Engineer with 17 
years of experience in design, operations, process 
control, and utility management. He holds a bachelor's 
degree in Civil Engineering from Virginia Military Institute, 
a master's degree in Environmental Engineering from 
Virginia Tech, and a Ph.D. in Water Engineering from 
Université Laval, Quebec, Canada. As the Director of 
Digital Water at Hampton Road Sanitation District, Jeff 
leads efforts to digitalize operations, including deploying 
Digital Twins, integrating AI, and optimizing processes. 



THE X OF INDUSTRIAL CONTROL, DATA-
DRIVEN MODELLING, AND DIGITAL TWINS AT 
WRRFS:  ACHIEVING NEXT-GEN BNR WITH
BALANCED COMPLEXITY

06/27/2025 

Jeff Sparks, PE, PhD, HRSD Director of Digital Water
PhD Defense

Advisors:
Peter A. Vanrolleghem, PhD, Université Laval, co-advisor
Charles B. Bott, PE, PhD, HRSD CTO, co-advisor



Introduction

1. Research Overview

2. Broader Applicability

3. Problem Statement

4. Hypothesis



Hampton Roads Sanitation District (HRSD)

• Who are we? 

• Regional utility located in Eastern Virginia 
(Eastern US).

• Established in 1940.

• Serves 20 counties and cities covering nearly 
5,000 square miles and including ~ 1.9 million 
people.

• 8 major treatment plants and 6 smaller plants.

• Total combined treatment capacity of 225 
MGD.
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Research Overview

• Blending the topics of control, modelling, and Digital Twins in a way that is 

digestible to practitioners (balanced complexity).

• Ammonia-Based Aeration Control (ABAC).
• What is ABAC?

▪ Aerate the least amount possible.

• Why ABAC? Hasn’t this been done before?

▪ Not with the cutting-edge data-driven tools presented in this work.

• Where was this research performed?

▪ The Hampton Roads Sanitation District (HRSD) Nansemond Treatment Plant (NTP) in Eastern 
Virginia, US – a 114,000 m3/d, suspended growth, single-sludge, 5-stage Bardenpho facility  
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▪ Novelty – this is ABAC based on a Digital Twin (DT) purpose-built for nitrification enhancement 
(the first of its kind).

▪ Bridging the gap between research and practice – research performed at a full-scale Water 
Resource Recovery Facility (WRRF).



Broader Applicability

• This research applies to: 

• Control applications where the Process Variable (PV) is difficult to control due to 
significant influent load dynamics and there is a relatively plug flow Residence 
Time Distribution (RTD).

• Utilities maintaining or interested in a WRRF DT and what value it might offer.

• Utilities performing or interested in:

▪ ABAC, 

▪ potable reuse, and/or

▪ mainstream partial denitrification anammox (PdNA)
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Operating Budget 
Breakdown at the HRSD 
NTP
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Methanol (27%) + 

Sodium Hypochlorite (21%) +

Ammonium Sulfate (4%) ,

Total = 52%

Materials & 

Supplies 3%

Ferric Chloride

1%

Muriatic Acid 

6%

Polymer

29%

Sodium 

Hydroxide 9%

Total Operating Budget

Chemical Budget
By implementing mainstream PdNA, oxygen and external COD requirements can theoretically be reduced by up to 35% and 61-65%,

respectively. 

McCullough K, Klaus S, Parsons M, Wilson C, Bott CB (2022) Advancing the understanding of mainstream shortcut nitrogen removal: Resource efficiency, 

carbon redirection, and plant capacity. Environ Sci Water Res Technol 8(10):2398–2410.

“In a real wastewater treatment facility, disinfection is typically sought through chloramine over free chlorine in order to maintain a

longer lasting residual and reduction in the harmful by-products by chlorination disinfection.”

 
Khawaga R, Abouleish M, Abdel Jabbar N, Al-Asheh S (2021) Chlorination breakpoint with nitrite in wastewater treatment: A full factorial design experiments. J 

Environ Chem Eng 9(1):104903.



HRSD NTP
Baseline Conditions
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▪ The problem with a strict feedback Proportional-Integral (PI) controller for 

ABAC is that it will struggle when the following conditions are present:
1. the Residence Time Distribution (RTD) of the bioreactor approaches plug flow

2. there is a high degree of variability in the influent load dynamics

3. the ammonia (NHx) sensor is located in the last aerated zone

1 2 3 4 5 6Flow

dye injection point

dye sampling point

“There are often large time delays in treatment plants. Time delays are – in a feedback system – not easily managed by a controller. If 

ammonium is to be measured for aeration control the sensor can be placed in the aeration basin in situ. In a plug flow system and

especially at larger plants, a sensor placed in the last aerated zone will be delayed in relation to the concentration in the first aerated

zone.”

Åmand L (2014) Ammonium Feedback Control in Wastewater Treatment Plants. PhD Thesis, Uppsala University, Sweden

“The main optimization factor was identified to be the upstream aeration control rather than the PdNA process itself. The aeration 

control optimization could be the focus for future research.”

Fofana R, Parsons M, Long C, Chandran K, Jones K, Klaus S, Trovato B, Wilson C, De Clippeleir H, Bott C (2022) Full‐scale transition from denitrification to 

partial denitrification–anammox (PdNA) in deep‐bed filters: Operational strategies for and benefits of PdNA implementation. Water Environ Res 94(5):e10727. 
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• In the context of this work, Control Authority (CA) is defined by whether a 

controller is operating on a bound. If the NHx is elevated, we want to 

increase the Dissolved Oxygen Setpoint (DOSP) and vice-versa. This is not 

possible if we are on a bound.

• Current barriers to good control authority:
▪ non-ideal controller tuning

▪ NHx controller produced DOSP bounds set too tight

▪ poor waste rate and aerobic SRT control

▪ controller delays
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Problem Statement
Barriers to Good Control Authority



Hypothesis

The implementation of modern data-driven control tools, including DTs and 

Data-Driven Models (DDMs), into a facility's ABAC control philosophy offer a 

significant improvement over existing technology. By overcoming the limitations 

of traditional systems, these tools have the potential to achieve a level of 

performance necessary for mainstream partial denitrification anammox 

(PdNA). Furthermore, they allow for full-scale potable reuse while 

simultaneously optimizing operational costs associated with energy and 

chemical usage. Ultimately, these advancements lead to enhanced overall 

process performance and higher effluent quality at full-scale.
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Methods

1. Digital Twin

2. 3-Pronged Approach to Nitrification Enhancement
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3-Pronged Approach to Nitrification Enhancement
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NITO 

population & 

kinetics

• XNITO and µmax-NITO estimations using the DT and a Nelder-Mead optimizer, based on 
observed operational data.

Waste rate 
suggestions for 

max CA

• Waste rate change suggestions for the operator to maximize CA, based on scenario 
analyses that account for possible NHx/TKNinf Fractions. Other inputs include known 
historical TKNinf Loads and Tempfcast , as well as µmax-NITO and XNITO from (1).

Feedforward- 

Feedback

ABAC

• Hybrid model-based control of Z3eff NHx, based on XNITO and µNITO from (1), and data-
driven forecasted mechanistic model errors.
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Vrečko D, Hvala N, Stare A, Burica O, Stražar M, Levstek M, Cerar P, Podbevšek S (2006) 

Improvement of ammonia removal in activated sludge process with feedforward-feedback 

aeration controllers. Water Sci Technol 53(4–5):125–132.



Results & Conclusions

1. XNITO & µmax-NITO soft sensor

2. Waste Rate Scenario Analyses

3. Feedforward-Feedback ABAC



3-Pronged Approach to Nitrification Enhancement

16

NITO 

population & 

kinetics

• XNITO and µmax-NITO estimation using the DT and a Nelder-Mead optimizer, based on 
observed operational data.

Waste rate 
suggestions for 

max CA

Feedforward- 

Feedback

ABAC

1



1) If the objective is NHx prediction accuracy, then only µmax-NITO needs real-time 

estimating. Including additional kinetic parameters in the optimizations does not 

significantly improve accuracy.

2) Nelder-Mead optimization can provide improved µmax-NITO estimations compared to 

Latin Hypercube when:

a) there are limitations on Nelder-Mead iterations and Latin Hypercube samples to save on 
computing power,

b) and n_iterations = n_samples.
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Results & Conclusions
Prong 1 – XNITO & µmax-NITO soft sensors
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3-Pronged Approach to Next-Gen Nitrification
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NITO 

population & 

kinetics

Waste rate 
suggestions for 

max CA

Feedforward- 

Feedback

ABAC

• Hybrid model-based control of Z3eff NHx, based on XNITO and µNITO from (1), and data-
driven forecasted mechanistic model errors. 3
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Results & Conclusions
Prong 3 – Hybrid feedforward-feedback ABAC
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Results & Conclusions
Prong 3 – Hybrid feedforward-feedback ABAC
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Results & Conclusions
Prong 3 – Hybrid feedforward-feedback ABAC
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AT 6 Controller MAE = 0.81 mg/L-N
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feedback component added to 

feedforward equation.
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1) The DT’s mechanistic performance in each AT is hampered by physical disparities 

between the tanks and unknown influent / environmental conditions.

2) The DT’s performance in each AT can be improved significantly through data-driven 

correction of the mechanistic model using time-series DDMs, based on “recent” error 

behaviour, in a parallel hybrid architecture.
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Results & Conclusions
Prong 3 – Hybrid feedforward-feedback ABAC



1) The data do not support maintaining a constant model parameter set for the 

mechanistic model inside the DT.

2) A DT for operator training, providing nitrifier performance metrics, and informing 

future expansion designs can also be leveraged for calculating the DOSP in a 

feedforward-feedback ABAC scheme. The decision to do so depends on drivers.

3) Data-driven tools can be leveraged to provide robust ABAC for IPR, also paving the 

way for mainstream PdNA.
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Overall Conclusions



Merci!
Questions?
Jeffrey Sparks/Université Laval
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