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NOTES FOR SEMINAR ATTENDEES

Remote attendees’ microphones are muted at entry to minimize background
noise.
For attendees in the auditorium, please silence your phones.

A question and answer (Q/A) session will follow the presentation.

For remote attendees, please use “Chat” only to type questions for the presenter.
For other issues, please email Pam to SlabyP@mwrd.org.

For attendees in the auditorium, please raise your hand and wait for the
microphone to ask a verbal question during the Q/A session.

The presentation slides will be posted on the MWRD website after the seminar.

This seminar has been approved by the Engineering Society of Illinois (ESI) for one
PDH and pending approval by the IEPA for one TCH. Certificates will be issued only
to participants who attend the entire presentation. For PDH certificate seekers,
please complete a brief course evaluation and sgbmit_i}
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— Jeffrey Sparks, Ph.D., P.E., CDT

\/ Director of Digital Water

J Hampton Road Sanitation District ~
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Dr. Sparks is a licensed Professional Engineer with 17

years of experience in design, operations, process

control, and utility management. He holds a bachelor's

degree in Civil Engineering from Virginia Military Institute,

a master's degree in Environmental Engineering from

Virginia Tech, and a Ph.D. in Water Engineering from

Université Laval, Quebec, Canada. As the Director of

Digital Water at Hampton Road Sanitation District, Jeff

leads efforts to digitalize operations, including deploying -/
Digital Twins, integrating Al, and optimizing processes. J
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1. Research Overview
Broader Applicability
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Hampton Roads Sanitation District (HRSD)

* Who are we?

Regional utility located in Eastern Virginia
(Eastern US).

Established in 1940.

Serves 20 counties and cities covering nearly
5,000 square miles and including ~ 1.9 million
people.

8 major treatment plants and 6 smaller plants.

Total combined treatment capacity of 225
MGD.
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Research Overview

* Blending the topics of control, modelling, and Digital Twins in a way that is
digestible to practitioners (balanced complexity).

« Ammonia-Based Aeration Control (ABAC).

» Whatis ABAC?
= Aerate the least amount possible.
« Why ABAC? Hasn't this been done before?
=  Noveltth-tHbisustihnGACdmdethedrizdiddels prieséhtepimphieviank. for nitrification enhancement
(the first of its kind).
» Where was this research performed?

»  BhddtagripigdiobdsvBaniiaiaaidsimiot (HRSDE Naesearchdoeréatmed P ahd (N Tl iMEastern
Riegmiacé)Becavery,baailing/dVRRpended growth, single-sludge, 5-stage Bardenpho facility



Broader Applicability

 This research applies to:

« Control applications where the Process Variable (PV) is difficult to control due to

significant influent load dynamics and there is a relatively plug flow Residence
Time Distribution (RTD).

« Utilities maintaining or interested in a WRRF DT and what value it might offer.
« Utilities performing or interested in:

= ABAC,

= potable reuse, and/or

= mainstream partial denitrification anammox (PdNA)



Total Operating Budget

Personnel
26% Chemicals (21%) +
Energy (12%),
Total = 33%

F_ N 48 — | 4

“In a real wastewater treatment facility, disinfection is typically sought through chloramine over free chlorine in order to maintain a
longer lasting residual and reduction in the harmful by-products by chlorination disinfection.”

D

Khawaga R, Abouleish M, Abdel Jabbar N, Al-Asheh S (2021) Chlorination breakpoint with nitrite in wastewater treatment: A full factorial design experiments. J
Environ Chem Eng 9(1):104903.
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\ Other
Utilities

1%

Methanol (27%) +
Polymer Sodium Hypochlorite (21%0) +

29% Ammonium Sulfate (4%) ,
Total = 52%
Muriatic Acid
6%
Ferric Chloride Materials &

1% Supplies 3%



HRSD NTP
Baseline Conditions

Internal Mixed Liquor Recycle (IMLR)
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Problem Statement
Barriers to Good Control Authority

* In the context of this work, Control Authority (CA) is defined by whether a
controller is operating on a bound. If the NHx is elevated, we want to
increase the Dissolved Oxygen Setpoint (DOgp) and vice-versa. This is not
possible if we are on a bound.

* Current barriers to good control authority:
= non-ideal controller tuning
= NHx controller produced DOgp bounds set too tight
= poor waste rate and aerobic SRT control
= controller delays



Hypothesis

The implementation of modern data-driven control tools, including DTs and
Data-Driven Models (DDMs), into a facility's ABAC control philosophy offer a
significant improvement over existing technology. By overcoming the limitations
of traditional systems, these tools have the potential to achieve a level of
performance necessary for mainstream partial denitrification anammox
(PdANA). Furthermore, they allow for full-scale potable reuse while
simultaneously optimizing operational costs associated with energy and
chemical usage. Ultimately, these advancements lead to enhanced overall
process performance and higher effluent quality at full-scale.
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Methods

1. Digital Twin

2. 3-Pronged Approach to Nitrification Enhancement
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CA Estimations
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3-Pronged Approach to Nitrification Enhancement

* Xumo and U..nmo estimations using the DT and a Nelder-Mead optimizer, based on

[ I
NITO observed operational data. —#—@MG)

population & )
kinetics

+ Waste rate change suggestions for the operator to maximize CA, based on scenarig

analyses that account for possible NHx/TKN,,; Fractions. Other inputs include known ﬁ’-—‘@‘m@
Waste rate historical TKN,; Loads and Tempy,,, as Well as ,.,.niro @nd Xyro from (1).

suggestions for
max CA

—

\

* Hybrid model-based control of Z3,; NHx, based on Xy,ro and o from (1), and data-

driven forecasted mechanistic model errors. #’ ' _1@”‘@
Feedforward-

Feedback )
ABAC
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PCs &

Updated ABAC

at the HRSD
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Results & Conclusions

1. X\iro & Hmaxnimo SOft sensor
2. Waste Rate Scenario Analyses
3. Feedforward-Feedback ABAC
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3-Pronged Approach to Nitrification Enhancement

* Xumo and Upnmo €stimation using the DT and a Nelder-Mead optimizer, based on ~ -
observed openFaationaI data. =i —gll(D)

NITO

population & )
kinetics
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Results & Conclusions

Prong 1 — Xy70 & U,o0.nimo SOt Sensors
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3-Pronged Approach to Next-Gen Nitrification

* Hybrid model-based control of Z3,; NHx, based on Xy,ro and o from

driven forecasted mechanistic model errors.
Feedforward-

Feedback

(1), and data- :ll fl@

ABAC
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Mechanistic Error Forecasting
Engine or MEFE (“hybrid model”)

Results & Conclusions B A N\ e ot bt B +
Prong 3 — Hybrid feedforward-fe ck ABACI( 28 )”(ﬁzx3+ﬁ4x4+ﬁsxs )

Addition of the Residual Oscillation
Forecasting Engine or ROFE (“hybrid + FFT”) 2

8 . 8 :
O NHx observations e mech Mo, O X observations = mech model
7 = hyhrid model / 7 \—‘hyﬁ&model e yhrid + FFT
6 6
2 s z s
Y 2.
S 1S
Z ? = 2
1 1
0 0
-1
time (6 days total) Results time (last 5 days from left)
mech model MAE = 1.94 mg/L-N

MEFE MAE = 0.57 mg/L-N
ROFE MAE = 0.37 mg/L-N 19




Results & Conclusions
Prong 3 — Hybrid feedforward-feedback ABAC
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Results & Conclusions

Results
AT 6 Controller MAE = 0.81 mg/L-N
AT 4 MAE before tuning = 0.55 mg/L-N
AT 4 MAE after tuning = 0.20 mg/L-N

Prong 3 — Hybrid feedforward-feedback ABAC

feedback component added to
feedforward equation.
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Results & Conclusions
Prong 3 — Hybrid feedforward-feedback ABAC

1)

2)

The DT’s mechanistic performance in each AT is hampered by physical disparities
between the tanks and unknown influent / environmental conditions.

The DT'’s performance in each AT can be improved significantly through data-driven
correction of the mechanistic model using time-series DDMs, based on “recent” error
behaviour, in a parallel hybrid architecture.
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Overall Conclusions

The data do not support maintaining a constant model parameter set for the
mechanistic model inside the DT.

A DT for operator training, providing nitrifier performance metrics, and informing
future expansion designs can also be leveraged for calculating the DOgpin a
feedforward-feedback ABAC scheme. The decision to do so depends on drivers.

Data-driven tools can be leveraged to provide robust ABAC for IPR, also paving the
way for mainstream PdNA.
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Questions?

Jeffrey Sparks/Université Laval
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For PDH Certificate seekers,

the course evaluation form and

instructions are available in “Chat”.
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