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EXECUTIVE SUMMARY 

 

 

 This report summarizes the research conducted by Argonne National Laboratory 

(Argonne) for the Metropolitan Water Reclamation District of Greater Chicago (MWRD) for the 

first 3 years of a 7-year study to investigate the typical sources and distribution of microbial 

communities in the Chicago Area Waterway System (CAWS) and the response of the CAWS 

microbial ecology to the disinfection mangement process to be employeed during this term. 

 

 Microbial communities are key players in maintaining the CAWS health. Traditional 

laboratory culture methods such as fecal bacteria counts have been extensively used to 

characterize the CAWS microbial quality for regulatory purposes; however, these methods 

cannot resolve the source of the contamination. This study, which started in 2013, aims to 

understand the composition and sources of the CAWS microbial population using state-of-the-art 

amplicon and metagenomic science. Metagenomics is the study of whole microbial communities 

in a given sample by analyzing all the genetic material in that sample instead of analyzing select 

marker genes. This method enables us to identify common sources of microbial organisms 

(bacteria, archaea, and viruses) and assemblages, as well as their function in the Chicago River 

system. 

 

 There are many potential sources of the microorganisms in the CAWS, including treated 

effluent from wastewater treatment plants, land-based stormwater runoff, combined sewer 

overflows, sediment resuspension, storm drains, and direct input from animals. The study aims to 

provide a detailed investigation of the potential sources of microbes in the CAWS, especially 

fecal-indicator organisms. The investigation also aims to determine the biogeography of the 

microbial communities in the CAWS, whether free living or dependant on particular hosts such 

as humans, pets, or birds. It also aims to determine whether rainfall, temperature, water 

chemistry, and other factors are associated with the structure and composition of these microbial 

assemblages. In the long term, these data will provide another layer of information to enable 

good stewardship and management of this important water resource, as well as to gain insights 

into how to improve water quality for primary contact recreation uses. 

 

 Once completed, this study will document potential changes in microbial communities as 

the MWRD begins disinfecting its secondary-treated effluents at the O’Brien and Calumet Water 

Reclamation Plants in 2016 and as phases of the Tunnel and Reservoir Plan (TARP)—the 

Thornton Composite Reservoir and the first phase of the McCook Reservoir—are completed in 

2015 and 2017, respectively. The results from river water and sediment samples taken in the first 

3 years (2013–2015), discussed in this report, will serve as a baseline for future years’ data; they 

will be compared to additional samples that will be collected each year until 2019 as the MWRD 

takes steps to improve the CAWS water quality. 

 

 To date, we have analyzed and processed via 16S rRNA amplicon analysis 196 blank 

(equipment, filter) samples, 24 fish gut samples, 24 fish mucus samples, 261 sediment samples, 

and 429 water column samples from 17 sites in the Chicago River and related manmade 

waterways, together with 28 influent sewage, 10 mixed liquor, and 190 secondary-treated final 

effluent samples from two Water Reclamation Plants (WRPs, O’Brien and Calumet) sampled 
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during 2013, 2014, and 2015. We have also analyzed via shotgun metagenomics 54 samples 

from the 2013 and 2014 collection.  

 

 The study found differences in the microbial community structure based on the type of 

sample analyzed and possibly local environmental characteristics. Here we present the results of 

this baseline study period, demonstrating differential biogeographic patterns, source 

apportionment, and temporal structure for the microbial assemblages at each sampling site. We 

report the results of the microbial data as a function of wet/dry events across the three sampling 

years, and the effects of land-use type on CAWS water- and sediment-associated physiochemical 

properties.   

 

 Combining intensive water quality monitoring, land use and land cover (LULC) analysis 

at sampling sites, and bacterial source tracking provides useful information on major sources that 

could be contributing bacteria to the CAWS. We analyzed the distribution of the LULC to assist 

in characterizing the samples from each site. We determined similarities between sampling sites 

using the water chemistry data, microbial indicators, and LULC to describe the influence of 

effluent from WRPs, the distribution of LULC, and discharge from Lake Michigan on the water 

quality along the CAWS. The water quality sampling sites are not the same as the locations 

where flow and stage are monitored along the CAWS. Therefore, to extract flow, velocity, and 

stage data at each water quality sampling site, hydraulic modeling was implemented using the 

DuFlow model constructed for this project using the 2013 data. In the future, the model will be 

used to develop a computational interface that will allow us to integrate the microbial data with 

the hydraulic data; the objective which is to develop, in the future, better analytical and 

predictive capabilities for different sources of bacteria, in addition to spatial and temporal 

distribution of microbial hotspots. Data from subsequent years will be added to the model as data 

becomes available and as the interface is developed. 

 

 Results from this baseline analytical period can be summarized as follows: 

 

 The microbial communities in the CAWS were significantly different based on sampling 

location and sampling medium; however, they were stable between years and monthly 

sampling events.  

 

 Effluent-associated microorganisms, including human fecal indicators, could be tracked 

downstream of the secondary-treated effluent, and were typically more abundant close to 

its discharge location. 

 

 Sequencing of some of the E. coli culture plates provided by the MWRD show that the 

cultured bacteria represented a number of different E. coli strains, with a small number of 

genes present that were related to virulence, disease, and defense functions. 
 

 Land use had a significant effect on water- and sediment-associated physiochemical 

properties and microbial communities. 

 

 Differences between microbial communities could be attributed to different sources 

depending on sampling site, but showed similar apportionment between years. 
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 No significant difference in microbial community structure was observed between wet 

and dry sampling events. 

 

 Metagenomic analysis trends were similar to amplicon sequence trends. Mapping genes 

against E. coli supported amplicon evidence for a low abundance of this species, 

including a very low abundance of E. coli associated virulence markers. 

 

 Proposed work for the upcoming Phase 2 includes (1) repeating the ambient water quality 

monitoring schedule to observe whether disinfection causes recordable changes in microbial 

communities, (2) method development studies to determine with more precision the analytical 

sensitivity of the method in the presence of a large microbial diversity, and (3) the coupling of 

the current methodologies with methods such as qPCR to attain a better understanding of the 

quantitative aspects of this research. In 2016, we also plan to develop the modeling interface to 

link microbial community indicators to hydraulic parameters. 
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SUMMARY OF PRACTICAL IMPLICATIONS 

 

 

 This report summarizes the research conducted by Argonne National Laboratory 

(Argonne) on behalf of the Metropolitan Water Reclamation District of Greater Chicago 

(MWRD) for the first 3 years of a 7-year study to investigate the typical sources and distribution 

of microbial communities in the Chicago Area Waterway System (CAWS). 

 

 Microbial communities are key players in maintaining the health of the CAWS. 

Traditional laboratory-culture methods such as fecal bacteria counts and select pathogen 

Polymerase Chain Reaction (PCR)-based methods have been used to characterize the CAWS 

microbial quality; however, these methods are limited in their ability to resolve the source of 

fecal and/or sewage contamination. In addition, these methods do not completely describe the 

diversity of microbial communities present in the CAWS. This study, which started in December 

2013, aims to better understand the composition and sources of the microbial communities 

associated with the CAWS using 16S rRNA gene amplicon- and metagenome-based sequencing. 

For nearly two decades, 16S rRNA gene sequencing has been used for the accurate and reliable 

qualitative identification and classification of microorganisms. It remains a powerful technique 

for investigating microbial relationships and diversity; however, it cannot currently provide 

quantitative measurements of microorganisms. A metagenome represents the entire genetic 

material in a given sample. At the right sequencing depth, metagenomics-based sequencing can 

capture all genes present in all microbes. As a result, this scientific method gives insight into the 

functional potential of microbes present in that sample. Together with 16S rRNA gene 

sequencing, molecular methods such as metagenome sequencing can supersede, for qualitative 

analyses, typical culture-based methods that currently only detect approximately 8% of known 

microbes. Overall, these molecular methods reveal substantially more information about the 

diversity of the microbes present in the CAWS, their potential function, and their activity (e.g., 

antimicrobial resistance), and they can be used to predict with greater accuracy the common 

sources of microbes in these waters. These methods can also help us discover which microbes 

are present in the CAWS, and what these microbes are capable of doing in the CAWS. As noted, 

these methods are not quantitative and therefore cannot by themselves help us determine how 

many microbes are present for a specific genus, species, or phylum of bacteria. 

 

 This study aims to provide an understanding of several key questions: What are the 

sources of the CAWS’ microbial communities? Are they from specific sources? Are they 

widespread, or are they constrained to particular sections of the CAWS? Are they free-living 

microbes, or dependent on particular hosts such as humans, pets, and birds? The study also aims 

to determine whether environmental parameters such as characteristics of flow, rainfall, 

temperature, or water chemistry are associated with microbe presence. Potential sources include 

effluent from water reclamation plants (WRPs), direct stormwater runoff, and combined sewer 

overflows (CSOs). CSO events occur when stormwater runoff exceeds the capacity of the sewer 

network, resulting in the discharge of untreated wastewater and storm water into surface waters. 

CSOs are recognized as significant additional sources for micro-pollutants in surface waters. 

This study uses synoptic sampling at predetermined locations to collect water and sediment 

samples for microbial and metagenomics analysis based on set wet or dry weather conditions. 
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This project will provide information on how to dynamically manage this important water 

resource for primary contact recreation uses.  

 

 Once completed, this study will document potential changes in the microbial 

communities as the MWRD begins disinfecting its secondary-treated effluents at the O’Brien and 

Calumet WRPs in 2016 and as phases of the Tunnel and Reservoir Plan (TARP)—the Thornton 

Composite Reservoir and the first phase of the McCook Reservoir—are completed in 2015 and 

2017, respectively. The results from river water and sediment samples taken in the first 3 years 

(2013–2015), which are discussed in this report, will serve as a baseline for future years’ data. 

Additional samples will be collected each year until 2019 as the MWRD takes steps to further 

improve the CAWS water quality.  
 
 To date, we have processed and analyzed 196 blank (equipment, filter) samples, 24 fish 

gut samples, 24 fish mucus samples, 278 sediment samples, and 429 water column samples from 

17 sites in the CAWS and related man-made waterways, together with 22 influent sewage, 10 

mixed liquor, and 190 secondary-treated final effluent samples from two WRPs (O’Brien and 

Calumet) sampled during 2013, 2014, and 2015. We also analyzed samples of gull and dog 

droppings to identify microbes that are unique to these sources. These samples allowed us to 

differentiate the microbial community structure based on local environmental characteristics.  

 

 

METHODS 

 

 For this study, we rely on two different sequencing methods to analyze the samples 

received from the MWRD.  First, we isolate and analyze the genomic DNA of the samples using 

16S rRNA gene-based amplicon sequencing. In this analysis, the 16S rRNA genes of bacteria 

and archaea in these samples are amplified and sequenced using high-throughput sequencing 

(Illumina Miseq), which provides information about the particular bacterial and archaeal species 

present (i.e., “Who is there?”). Second, selected samples are also analyzed through shotgun 

metagenome sequencing, which provides us with valuable information on the gene functions 

associated with these microorganisms (i.e., “What are they capable of doing?”). Statistical 

analysis is then utilized to correlate the presence of specific microbial communities with 

potential sources and with other characteristics of the samples collected, such as chemical 

parameters or land use in the vicinity of the collection site. 

 

 In this report, we present the results of the baseline study period and the statistical 

analysis of the data generated, demonstrating differential biogeographic patterns, source 

apportionment, and temporal structure for the microbial assemblages at each sampling site.  

 

 A second part of this report presents the results of a parallel hydraulic model 

development effort, in which we sought to provide accurate model results of flow and other 

hydraulic parameters. These model outputs will allow us, in the future, to develop a 

computational interface to integrate the hydraulic data with the microbial community data so that 

we will be able to predict microbial dynamics as a function of river hydraulics and water quality. 

 

 



6 

RESULTS 

 

 Approximately 16.8 million high-quality 16S rRNA amplicons were generated from 891 

CAWS samples collected from 2013 through 2015. This analysis allowed us to determine which 

were the most common phyla (taxonomic grouping of microorganisms) present in our samples. 

Acidobacteria, Actinobacteria, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, 

Planctomycetes, Proteobacteria, and Verrucomicrobia were the 10 most abundant phyla, 

comprising approximately 90% of all reads. Acinetobacter was the most abundant bacterial 

genus, comprising approximately 4% of all sequence reads. These phyla are found in almost all 

environments (e.g., soil, sediment, water, marine sponge, wastewater), and include potentially 

beneficial and potentially pathogenic microbes.  

 

 Overall, when analyzing all samples together we observed no significant differences by 

year between samples collected across 2013, 2014, and 2015; this suggests that the riverine 

ecosystem is stable. No significant difference was observed in species richness (or the number 

and relative frequency of bacteria in each sample) at any sampling location (alpha diversity) on a 

month-by-month or seasonal basis. However, we found significant differences in species 

richness between sediment and water column samples, with sediment samples showing greater 

bacterial diversity than water column samples. When assessing species richness in samples taken 

at the Calumet and O’Brien WRPs, mixed liquor samples from the aerobic tanks were 

significantly more diverse than influent sewage samples. This shows that the activated sludge 

reactors host a varied and diverse microbial life, as predicted. Species richness for microbial 

communities in the final effluent samples was comparable to that observed for the water column 

samples, including beach, samples upstream of WRP, and tributaries. In addition, no significant 

differences were found in samples from the Calumet and O’Brien WRPs. This suggests that the 

sample medium (water versus sediment or mixed liquor or sewage) was the most significant 

driver of community diversity, compared to sampling month or location; each sample medium or 

type (ambient water, sediment, effluent, etc.) carries a distinct measure of diversity in terms of 

number or species represented and their frequency of distribution.  

 

 Core microbiomes (bacterial genera shared across 90% of all samples) for water column, 

sediment, sewage, and secondary-treated effluent samples were each computed. Sewage samples 

harbored the largest core microbiome as compared to secondary-treated effluent, sediment, and 

water column samples. Pairwise comparison of Operative Taxonomic Units (OTU) sharing 

between the different sampling media revealed the greatest OTU overlap between secondary-

treated effluent and sewage samples; sediment samples share the fewest OTUs with the other 

environments. 

 

 Microbial community profile similarities between samples (beta diversity) showed that 

there were significant differences in microbial community composition across sampling media, 

including beach water, fish gut, fish mucous, mixed liquor, secondary-treated final effluent, 

sediment, sewage, and water, but no significant differences in beta diversities were observed by 

sampling month or year. Once again, this suggests that the type of sampling media (water, 

sediment, effluent, etc.) has a larger effect on microbial community composition than does 

sampling month or year. Finally, beta-diversity analysis demonstrated that the influent sewage 

and secondary-treated final effluent samples clustered closely together, indicating a closer 
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similarity, and had bacterial community profiles more similar to the water column in the CAWS 

samples than to sediment. This suggests that sediments are not the highest contributors to 

microbes in the water column. 

 

 Source tracking methods were used to apportion microorganisms to known potential 

sources. The source tracking analysis to date (2013–2014 data) shows wide variability in the 

potential origin of bacterial communities across sites. Strikingly, the likelihood of human stool–

associated bacteria being present in these samples using the metagenomic method was low. 

Although source apportionment was shown to change dramatically over seasons and across sites, 

these sources provide evidence for potential contamination events. 

 

 All samples were also analyzed to determine the presence and distribution of human fecal 

and sewage contamination indicators. Sediment and water column samples comprised members 

of genera Bifidobacterium and Bacteroides, which are both indicators of human fecal 

contamination (more detail is found in Figures S6 and S7). Likewise, members of genera 

Acinetobacter, Arcobacter, Pseudomonas, and Thiothrix, all of which represent sewage 

contamination, were also identified in sediment and water column samples (Figures S8, S9, S10, 

and S11). Sampling locations immediately downstream of the two WRPs typically contained 

higher abundances of these indicators. This is particularly exemplified in the presence of 

Thiothrix, which was only found at a relatively high abundance in water column samples 

downstream of the O’Brien WRP. However, most of these indicators, including Arcobacter, 

Acinetobacter, Bacteroides, Bifidobacterium, and Pseudomonas, were also identified at relatively 

high abundances upstream of the two WRPs, thus lowering their suitability as indicators of 

WRP-derived sewage and human fecal contamination. 

 

 It is important to emphasize that despite the conclusive evidence of these fecal and 

sewage indicators, their presence (determined by 16S rRNA gene-based analysis) provides no 

information about their absolute abundance (quantitative measurements), virulence, 

pathogenicity, or viability. More information on the occurrence of virulence markers associated 

with E. coli is presented in the section on metagenomes; we are still processing and analyzing 

these data to determine further profiles of interest, including antibiotic resistance and viral 

organisms. Quantitative assessment methodologies such as qPCR need to be developed in 

association with the methods used in this study to relate the results from this analysis to any 

quantitative method commonly used to determine water quality. 

 

 Other attempts at understanding the relationships between typical culture-based methods 

and modern molecular-based methods included the sequencing of culture plate samples used by 

the MWRD to count fecal coliform and E. coli in effluent samples. Results showed that the 

cultured bacteria represented a number of different E. coli strains, but that only 0.03% of the 

genes identified in these cultures were related to genes associated to virulence, disease, and 

defense subsystems. Notwithstanding genome incompleteness, these results suggest that not all E. 

coli strains grown on the culture plates were pathogenic, and that some of the cultures were not 

of E. coli but rather general coliforms. 

 

 Using the extensive metadata collected by MWRD for 2013, 2014, and 2015, we 

investigated the effects of land-use type on CAWS water- and sediment-associated 
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physiochemical properties. This analysis showed that most water- and sediment-associated 

properties were significantly related to land-use type (e.g., commercial, recreational, residential).  

 

 Finally, our 16S rRNA analysis compared the microbial community diversity during wet 

and dry sampling events. Results showed that microbial diversity (number, distribution, and 

profiles of microorganisms) did not change significantly between samples collected during dry 

weather (dry events) and samples collected after precipitation. This may be due to the lack of 

changes in the overall community structure. This is represented by no change in the membership 

of observed microbes; however, this does not preclude changes in the absolute abundances 

(quantities) of key microbes such as fecal and sewage contamination indicator bacteria. 

Quantitative methods such as qPCR assays are essential to validate this hypothesis in 2016. 

 

 Shotgun metagenomics analysis provided complexity trends similar to those from the 16S 

rRNA amplicon analysis, showing that water samples had the lowest gene functional diversity 

and richness compared to sediment. The genera Rhodobacter, Novosphingobium, Synechococcus, 

Sediminibacterium, and Polynucleobacter were again differentially represented across sewage 

and ambient water samples. Polynucleobacter (a freshwater ecology indicator) 16S rRNA 

sequences were resolved to the strain level using oligotyping. Geographic localization (linear 

distance between sampling sites) had no significant correlation with either OTU or oligotype 

distribution, which suggests that physicochemical factors, and hence local adaptation, shapes the 

diversity of Polynucleobacter strains. 

 

 Protein-coding genes from shotgun metagenomes from 2013 were cataloged to depict the 

functional potential and distribution of potential virulence genes for the microbial community in 

sediment and water across the CAWS. The virulence markers associated with E. coli include 

subsets of functions associated with sites that were most likely to be contaminated with E. coli 

due to their proximity to secondary-treated effluents. Strikingly, the abundance of virulence 

marker genes for E. coli was very low at all sampling locations, including those associated with 

secondary-treated final effluent locations. Further analysis and more samples will help us 

determine the temporal variance and spatial heterogeneity of these signals and to catalog the 

potential origin of existing E. coli signatures.  

 

 

DEVELOPMENT OF A PREDICTIVE MODEL 

 

 Because of the intermittent nature of sampling along the CAWS, the spatial and temporal 

occurrence of microbial communities may not be fully captured. In addition, the analytical 

sampling sites are not the same as the locations where flow and stage are monitored along the 

CAWS; however, their hydraulic parameters (e.g., flow stage, and velocity) may be critical 

drivers of microbial resuspension, growth, and die-off. Therefore, to extract flow, velocity, and 

stage data at each sampling site, hydraulic modeling becomes the plausible alternative. It enables 

the integration of microbial data into a modeling framework to provide analytical and predictive 

assays of spatial and temporal microbial occurrences.  

 

 To prepare for the integration of hydraulic and microbial data, we built the model 

DuFlow from previous efforts of the MWRD to provide hydraulic modeling of the CAWS. We 
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focused on building the model using the 2013 data as a prototype for further development in 

future years. Details on the data used for the model are in the main body of the report. Model 

accuracy was validated using Lemont Chicago Sanitary and Ship Canal Station data. Statistical 

analysis of the data generated showed that the model was of high quality and could reliably 

predict hydraulic parameters for the CAWS.  

 

 

PLANNED AND ONGOING ACTIVITIES FOR 2016 

 

 Continue the analysis of the ambient water monitoring samples of the CAWS to 

determine the impact of disinfection, and TARP improvements on the microbial 

communities. 

 

 Develop a better understanding of the sequencing depth needed to reliably determine the 

presence of regulatory species at the concentrations of interest as a function of sample 

diversity measures. 

 

 Integrate the sequencing methods with methodologies such as qPCR to provide absolute 

quantitative measures of diversity. 

 

 Develop the hydraulic-microbial interface using neural network modeling methodologies. 

Once that has been developed, we will apply the entire modeling framework (DuFlow 

plus neural network interface) to the entire 2013–2015 period and eventually, when 

available, to the 2016–2019 period. With the integration of flow and microbial data we 

will be able develop an integrated microbial predictive model for forecasting and analysis 

of alternative management scenarios.  
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PART 1—16S rRNA AND SHOTGUN METAGENOMIC ANALYSIS OF WATER AND 

SEDIMENT SAMPLES COLLECTED DURING THE CHICAGO AREA WATERWAY 

SYSTEM MICROBIOME PROJECT 

 

Melissa Dsouza, Naseer Sangwan, Jarrad Hampton-Marcell, Jack A. Gilbert 

Argonne National Laboratory and the University of Chicago 

 

 

1  INTRODUCTION 

 

 Microbiological water quality has broad implications for economic, health, and 

environmental impacts. It is often complicated to monitor pathogens directly to assess water 

quality due to their low abundance in natural river systems; in addition, they are often difficult to 

culture and have patchy distributions. To develop better tests for the assessment of ecosystem 

health, foundational data is required to answer fundamental questions about the presence and 

distribution of microbial communities. In particular, how do these communities vary over time, 

across different sites, land-use types, and storm events? 

 

 Microbiome studies based on high-throughput deoxyribonucleic acid (DNA) sequencing 

have advanced to the point where we are now able to determine the effect of environmental 

conditions on microbial community composition; this is essential if we are to understand how the 

Chicago Area Waterways System (CAWS) is responding to changes in management practices. 

Understanding the response of the entire microbial ecosystem to changes in how the water 

reclamation plants (WRPs) are operated is fundamental to our appreciation of the implications 

for environmental health. Microbial communities can be described in terms of diversity levels, 

such as the number of species (e.g., richness, alpha diversity), or the relative abundance and 

structure of these species (e.g., biogeography and beta diversity). Standard approaches to 

cataloging the impacts of secondary treated effluent on the environment (such as tracking the 

abundance of individual human pathogens), fail to capture the dynamic response of the 

ecosystem to such perturbations. These methods fail to capture, for example, the dynamics of 

potential pathogens, emergent organisms, viruses, and the ability to track functional genes that 

could be related to human health. Amplicon and shotgun metagenomic sequencing approaches 

fill this gap, substantially improving our understanding of the system and providing a platform 

from which to assess potential risk due to impacts that can destabilize the ecological processes of 

the river. Both amplicon and shotgun approaches have advantages and disadvantages, which we 

are working to quantify over the duration of this proposal. Amplicon sequencing provides a 

broad qualitative assessment of total community composition, but can fail to capture rare 

organisms, including human pathogens, at low sequencing depths. In addition, amplicon 

sequencing only really identifies a coarse-level assessment of the taxonomy of the microbial 

community; shotgun metagenomic improves upon this by providing data to support the 

characterization of functional potential and viral composition, and to link to known bacterial 

species virulence markers such as antibiotic resistance cassettes and toxin pathways. Leveraging 

a full array of tools to assess ecosystem health, and contextualizing these with regard to existing 

requirements for observational assessment (e.g., abundance of E. coli) is the primary aim of this 

research. 
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 Taxonomic characterization of riverine microbiomes has revealed that seasonal 

taxonomic shifts could be important in predicting the effect of contamination on microbial 

communities. For example, a study that sampled the Zenne River in Brussels (Belgium) once per 

season for one year found seasonal variability in the recovery of bacterial community 

composition after exposure to sewage effluent (García-Armisen et al. 2014). Another study, 

limited to the early summer over two years, indicated that land use affected the taxonomic 

composition of bacterial communities in the Upper Mississippi River in Minnesota across 

forested, urban, and agricultural sites (Staley et al. 2014). 

 

 

1.1  FECAL INDICATOR BACTERIA 

 

 Fecal indicator bacteria (fecal coliform, Clostridium perfringens, Escherichia coli, and 

enterococci) have been historically used to assess human health risk from waterborne pathogens 

in an environmental testing (Scott et al. 2002; Field and Samadpour 2007). The presence of 

fecal-associated bacteria is a major cause of water quality degradation in the nation’s waterways 

and coastal regions. Epidemiological studies have already established human health standards 

based on quantity and exposure of fecal indicator bacteria in drinking, recreational, and shellfish 

waters (Field & Samadpour 2007). Because the most serious threat to human health is thought to 

come from human fecal contamination, untreated sewage waters are considered one of the 

greatest human fecal pollution sources, and so combined sewer overflows (CSOs) and sanitary 

sewer overflows (SSOs) are believed to be the major source of concern for human-associated 

pathogens (Rijal et al. 2009, 2011; Newton et al. 2013). However, fecal contamination and 

pathogens may also enter the waterway from storm water, agricultural runoff, leaking sanitary 

sewers, and other sources. These additional sources can contain not only human feces–associated 

microorganisms, but also fecal-associated contaminants from pets, wildlife, agricultural animals, 

or industrial waste. The potential disease risk of these sources is much less understood, and 

shows that the sources of potential contamination are numerous and complex, which makes an 

effective mitigation strategy difficult to devise. One way to overcome this is to define specific 

source metrics (percent probability of contamination coming from that source) for key locations 

in a waterway network, and determine the dynamic change over time. 

 

 Although conventional fecal indicator detection methods—such as culture-dependent 

assays of total coliforms, fecal coliforms, E. coli and enterococci, and culture-independent 

methods such as quantitative PCR (qPCR for Bacteroides, Bifidobacterium, etc.)—have been 

widely employed as proxies for fecal pollution in waterways, they often do not accurately 

represent the health of the ecosystem or the associated human risk and are unable to determine 

the potential source of the pollution. There are three key reasons why these techniques are less 

than favorable: (1) their lack of host specificity as a variety of warm- and cold-blooded animals 

can shed fecal indicator bacteria (Gordon and Cowling 2003), making it unclear whether E. coli 

or other fecal indicator organisms are contributed from human or animal sources; (2) an adequate 

fecal indicator should not reproduce outside the host, but organisms like E. coli and enterococci 

are ubiquitous in natural environments, where they can establish populations in lakes and streams, 

sand, sediments, plant surfaces, and other locations; and (3) an indicator should both be 

correlated with the presence of pathogens and have a survival profile similar to the survival 

profile of the pathogens whose presence it indicates (Field and Samadpour 2007). However, 
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although epidemiological studies have shown a correlation between gastrointestinal illness and 

elevated fecal indicator organism levels (Wade et al. 2003), the relationship between indicators 

and other diseases or disease-causing bacteria is not significant (Savichtcheva and Okabe 2006). 

For example, in most instances E. coli and enterococci are not well correlated with pathogenic 

Salmonella spp., Campylobacter spp., Cryptosporidium, Giardia spp., or human enteroviruses. 

However, moderately positive correlation between enterococci and Giardia spp. populations 

were observed for water column samples collected from inland lakes, rivers, and Lake Michigan 

than in effluent-dominated waters collected from the CAWS (Dorevitch et al. 2011). Therefore, 

to estimate human health risk associated with exposure to contaminated waters, it is necessary to 

diagnose the sources of fecal contamination in water; a procedure often referred to as microbial 

source tracking (MST). MST relies on the assumption that some characteristics in, or associated 

with, feces can unequivocally identify a particular feces type or host source, and that this can be 

detected in water (Field and Samadpour 2007; Roslev and Bukh 2011).  

 

 

1.2  MICROBIAL SOURCE TRACKING METHODS 

 

 Because conventional fecal indicator bacteria are limited in their ability to identify the 

source of contamination and to accurately diagnose human health risk, several alternative MST 

methods have been developed; however, the accuracy of many of these methods is not well 

documented because few of them have undergone comparative testing and/or testing with blind 

samples. Most MST methods and their advantages and disadvantages have been reviewed in 

several articles (see Scott et al. 2002; Field and Samadpour 2007; Hagedorn et al. 2011). Those 

methods are categorized into culture-dependent (e.g., direct culturing of organisms like 

Bifidobacteria; antibiotic resistance assays; DNA fingerprinting of cultured isolates such as 

ribotyping, REP-PCR, PFGE), and culture-independent methods (e.g., community fingerprinting 

[T-RFLP]; chemical methods [e.g., caffeine, fecal sterols detection]; qPCR methods; E. coli 

toxin genes analysis). Importantly, no single source-tracking method alone appeared to be ideal 

because most of these indicators rely on identifying a taxonomically narrow set of bacteria (e.g., 

a single species) and most are incapable of discriminating between human sources and some or 

at least one animal source (Shanks et al. 2009). Therefore, a combination of several methods or 

the use of several bacterial taxa—instead of a limited number of specific target genes—as source 

tracking indices is more appropriate to define fecal contamination status. This multi-phasic 

approach will enhance discrimination and/or could be used to provide confirmation of results. 

 

 The advent of high-throughput culture-independent characterization of microbial 

communities, which can identify thousands of organisms from environmental samples, has 

enabled a more in-depth characterization of bacterial community structure. These community-

based approaches are better able to explore microbial fluctuations due to physical, chemical, and 

biological influences. Therefore, high-throughput sequencing technologies (e.g., Illumina) are 

proposed as a promising MST method and have received increasing attention for their use in the 

characterization of water contamination and in the accurate assessment of human health risk 

(Unno et al. 2010; McLellan et al. 2010; Newton et al. 2011, 2013; VandeWalle et al. 2012). 

High-throughput sequencing techniques, through the use of multi-taxon signatures, could help 

identify many new source-specific targets and improve sensitivity and specificity for tracking 

fecal pollution sources. 
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1.3 HIGH-THROUGHPUT SEQUENCING AS A MST TOOL IN SEWAGE AND 

WATERWAYS 

 

 Some of the first studies using high-throughput sequencing tried to disentangle the 

overlap among human and other animal sources of microbes. These studies focused on 

characterizing host-specific fecal microbiota by analyzing human and animal feces, in order to 

then use that indicator information as an MST tool in water environments. Lee and colleagues 

(2011) sequenced the V2 region of the 16S rRNA gene of humans, chickens, cows, pigs, and 

geese using a high-throughput sequencing approach; results indicated that although the general 

compositions of the gut microbiota in humans and other vertebrates were similar (with members 

of Actinobacteria, Proteobacteria, Firmicutes, and Bacteroidetes appearing in all fecal samples), 

specific differences related to microbial diversity and the presence of specific microorganisms 

that might be useful as host-specific biomarkers were identified in each host gut. For example, 

Bifidobacterium represents fecal contamination from humans, Yania spp. is a specific indicator 

for chicken fecal contamination, Agromyces spp. for goose, and Marinicola spp. for pig fecal 

contamination. However, this study did not include watershed samples, so the utility of such 

host-specific microorganisms in water-based environments remains undetermined. 

 

 Unno and colleagues (2010) proposed a new parameter to assess fecal contamination in 

watersheds, based on the percentage of pyrosequencing-derived shared operational taxonomy 

units (OTUs) between watershed and intestinal microbiota. Using the V1–V3 region of the 16S 

rRNA gene to characterize the microbiome of human and farm-animal feces (chickens, ducks, 

beef cattle, dairy cattle, and swine) they determined the percent contribution these sources made 

to the watershed, showing that the majority of reads in the shared OTUs belonged to the phyla 

Bacteroidetes, Firmicutes, and Proteobacteria. They also showed that the greatest overlap of 

shared OTUs between fecal and environmental samples was identified with human and swine 

fecal samples at an urbanized agricultural area of the Yeongsan River (South Korea) and at an 

open area with no major industrial activities (these sites showed ≥1600 Colony Forming Units, 

or CFU/100 mL and 940 CFU/100 mL E. coli counts respectively). However, a third site in the 

river—representing a typical agricultural area and accounting for ≥1600 CFU/100 mL of E. coli 

counts—shared most of its OTUs with geese fecal samples. Only a few or no sequences in each 

of the fecal samples analyzed were classified as E. coli. This is in agreement with previous 

studies that reported that E. coli typically comprised ~1% of the total gut bacteria from these 

samples (Dowd et al. 2008). 

 

 McLellan and colleagues (2010) used 16S rRNA gene pyrosequencing (V6 region) to 

attempt to identify a set of new alternative fecal indicators that could track human fecal-

associated bacteria in sewage and river water (during overflows), as well as to gain insights into 

the composition of low-abundance and dominant populations in microbial communities released 

into the environment as a result of sewage overflows. Eight untreated sewage influent samples 

from two wastewater treatment plants in metropolitan Milwaukee were studied and their 

community profiles were compared to a river surface water sample and to the microbial 

community observed in human feces samples from the Dethlefsen et al. (2008) and Turnbaugh et 

al. (2009) projects. A human fecal signature was identified in the sewage samples (comprised of 

several taxonomic groups including multiple Bifidobacteriaceae, Coriobacteriaceae, 

Bacteroidaceae, Lachnospiraceae, and Ruminococcaceae genera); however, a greater proportion 
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of the sewage tags belonged to taxonomic groups within Gammaproteobacteria (i.e., 

Acinetobacter, Aeromonas, and Pseudomonas) in addition to Arcobacter (Epsilonproteobacteria) 

and Trichococcus (Bacilli), reflecting that sewage microbial communities form a unique 

population structure. Although the fecal signature comprised a small fraction of the taxa present 

in sewage, these genera were much more prevalent in the sewage influent than standard 

indicators species, which were extremely rare (E. coli, Enterococcus, and Clostridium 

perfringens accounted for <0.7% of the total tags, even when including taxa classified to those 

organisms at a high taxonomic levels). 

 

 As a continuum of the previous study, VandeWalle and colleagues (2012) conducted a 

more detailed study of sewage influent microbes by analyzing the population structure and 

temporal dynamics within sewage influent through 16S pyrotag sequencing of the V6 region. 

The three most dominant taxa in sewage were Acinetobacter (16.1%), Aeromonas (9.8%), and 

Trichococcus (7.7%) although they occurred in low abundance in uncontaminated surface waters. 

Only a small fraction of pyrotags from influent samples (~15%) matched sequences from human 

fecal samples. Lactococcus (1.7%) and Enterobacteriaceae (1.6%) were enriched in sewage 

samples compared to human datasets. Increases in sewage-associated organisms were detected 

during combined sewer overflow (CSO) events, with this contaminated water containing a 20–30 

times higher relative abundances of sewage-specific indicators (Acinetobacter, Trichococcus, 

and Aeromonas) and fecal taxa (Lachnospiraceae and Bacteroides). 

 

 Newton and colleagues (2011) examined water fecal contamination from the Milwaukee 

harbor with conventional and alternative indicators. They also used pyrosequencing to identify 

and develop a new quantitative PCR (qPCR) assay for a Lachnospiraceae phylotype (Lachno2) 

that they found was highly abundant in sewage influent and prevalent in human fecal 

communities, but not in cow samples. Pyrosequencing data were used to characterize both the 

water treatment plant influent samples community and the harbor microbial community during 

dry weather, rain, and combined sewer overflow events. The prevalence of human fecal pollution 

was also analyzed by conventional methods such us Bacteroidales spp. qPCR, and conventional 

Escherichia coli and enterococci plate count. Authors showed that Lachnospiraceae and human 

Bacteroidales had increased specificity to detect sewage compared to conventional indicators, 

and the presence and abundance of those organisms were correlated to human adenovirus 

occurrence, which suggests that these alternative indicators could be useful in improving 

assessments for human health risks in urban waters. 

 

 Newton and colleagues (2013) also conducted a similar study to identify signatures of 

sewage and fecal pollution derived from the Milwaukee river systems into waters of Lake 

Michigan by sequencing the V6 and V6–V4 hyper-variable regions. Samples were collected in a 

variety of weather scenarios to help scientists better understand the fluctuation of microbial 

community. No rain (dry weather) samples and samples after rain were collected after a 48-h 

rainfall total of <1.2 cm and >2.5 cm prior collection. Authors also collected CSO samples 

during or directly following combined or sanitary sewer overflows. In addition, the authors 

explored the extent of the fecal bacterial footprint imposed by the discharge of Milwaukee 

system in Lake Michigan. A microbial signature associated with sewer, nonhuman fecal, and 

human fecal pollution was identified. Acinetobacter, Arcobacter, and Trichococcus sequences 

were the sewer-associated genera, while Bacteroidaceae, Porphyromonadaceae, Clostridiaceae, 
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Lachnospiraceae, and Ruminococcaceae served as fecal contamination signature. Differences in 

the abundances of these indicators were observed during the different weather scenarios: the 

relative contribution of the sewer and fecal signature increased to >2 % of the measured surface 

water communities following sewer overflows. The ratio of the human fecal pollution signature 

to the nonhuman fecal pollution signature in combined sewer overflows was generally close to 

that of sewage, suggesting a human-associated source at overflow events. However, this ratio 

decreased during dry weather and rain events, suggesting that nonhuman fecal pollution was 

dominant during those scenarios. The qPCR detection of the two human fecal indicators used in 

the previous study (Bacteroides qPCR and Lachno2, (Newton et al. 2011) indicated the extent of 

the urban fecal footprint, offshore lake Michigan. 
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2  STUDY AIMS AND OBJECTIVES 

 

 

 This list of questions guided our analyses of the microbial communities associated with 

the CAWS:  

 

1. Does microbial species diversity show differential geographic and temporal structure? 

a. Are the observed differences correlated with sampling medium (sediment vs. water 

column vs. effluent)? 

b. Are the observed differences correlated with sampling time points (year and month)?  

c. Are the observed differences correlated with sampling site? And in particular, is there 

an effect of sampling site location (upstream or downstream of a WRP)? 

 

2. What is the relative abundance of fecal indicator organisms (FIOs)? 

a. Does FIO abundance decay with distance from point sources? 

b. What are the functional attributes of potential FIOs? 

 

3. What are the potential sources of microbial organisms at different points in the CAWS? 

a. Does source apportionment for a particular location vary in different seasons or 

years? 

b. Are sources highly local, or are they more general across the CAWS? 

 

4. How does land use influence microbial community structure? 

a. Does land use influence physicochemical properties in the CAWS? 

b. Do different land types influence source apportionment? 
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3  MATERIALS AND METHODS 

 

 

 The locations of sampling and physiochemical analysis sites are illustrated in Figure 1 

and Table 1. Samples were collected and prepared (via filtration) by MWRD personnel and 

delivered to Argonne periodically. Quality assurance/quality control (QA/QC) procedures and 

methods for the storage and processing of the samples are discussed in the Quality Assurance 

Project Plan (QAPP) dated February 4, 2015. 

 

  

FIGURE 1  Map of sites under investigation during the 2013, 2014, and 2015 

sampling seasons. 



18 

TABLE 1  Location details for each site. 

 

Site Waterway System Street Reference Distance 

    
A. CAWS North   
112 North Shore Channel (NSC) Dempster Street ~1.3 miles upstream from O'Brien WRP 

36 North Shore Channel Touhy Ave. ~0.7 miles downstream from O'Brien WRP 
73 North Branch Chicago River Diversey Ave. ~6.7 miles downstream from O'Brien WRP 
    
B. CAWS North Tributary   
96 North Branch Chicago River

a Albany Ave. Tributary river ~3.4 miles from O'Brien WRP 
   (confluence 3.4 miles from WRP, actual station 

3.5 miles) 
    

C. CAWS Main Stem   
100 Chicago River Main Stem Wells St. Downtown Chicago River ~11 miles from O'Brien 

WRP (11.1 miles to actual station) 
    
D. CAWS South Branch Chicago River  
108 South Branch Chicago River Loomis St. ~14.5 miles downstream from O'Brien WRP 
99 SF, South Branch Chicago 

River 
Archer Ave. South Fork River (~Bubbly Creek receives Racine 

Avenue Pumping Station discharge flow) ~14.7 miles 
    
E. CAWS Calumet River   
86 Grand Calumet River

a Burnham Ave. Upstream tributary ~4.4 miles from Calumet WRP 
55

b Calumet River
a 130th St. Upstream tributary ~5.6 miles from Calumet WRP 

56 Little Calumet River
a Indiana Ave. ~1 mile upstream from Calumet WRP 

76 Little Calumet River
a Halsted St. ~1.2 miles downstream from Calumet WRP 

57 Little Calumet River
a
 Ashland Ave. Tributary River ~1.7  miles from Calumet WRP 

52
b
 Little Calumet River

a
 Wentworth Ave. Tributary River ~1.7  miles from Calumet WRP 

97
b
 Thorn Creek

a
 170th St. Tributary River ~1.7  miles from Calumet WRP 

    

F. CAWS Cal-Sag Channel   

59 Cal-Sag Channel Cicero Ave. ~6.3  miles downstream from Calumet WRP 

43
b
 Cal-Sag Channel Route #83 ~17.2  miles downstream from Calumet WRP 

a Sites on CAWS without influence from  O'Brien and Calumet WRPs. 
b Sites sampled in 2014–2015 to document baseline conditions in the Calumet River System in the 2 years preceding 

completion of the Calumet TARP System's Thornton Composite Reservoir. 
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3.1 ASSESSING MICROBIAL COMMUNITY STRUCTURE ACROSS THE CAWS 

OVER 3 YEARS USING 16S rRNA AMPLICON SEQUENCING 

 

 We have utilized a 16S rRNA amplicon high-throughput sequencing approach to 

characterize the microbial communities associated with the CAWS. During this reporting period, 

we processed 196 blank (equipment, filter) samples, 9 E. coli (BioBall®) spiked samples, 27 fish 

gut samples, 24 fish mucus samples, 278 sediment samples, and 429 water column samples from 

17 sites in the Chicago River and artificial canals (Figure 1). In addition, 22 influent sewage, 

10 mixed liquor, and 190 secondary treated final effluent samples from two WRPs (O’Brien and 

Calumet) (Figure 1, Table 1) collected from 2013 through 2015 were also analyzed, in addition 

to 7 Lake Michigan beach water samples collected in 2015 during river backflow. Additional 

information on the number of sediment and water column samples that were processed is 

included in Table 2. A complete list of samples is included in Table S1 (Appendix A). 

 
TABLE 2  Summary of sediment and water column samples by sites on the CAWS. 

  

 

Water column  Sediment 

Site Address 

 

2013 2014 2015  2013 2014 2015 

         

36 North Shore Channel at Touhy Ave. 7 9 9  6 10 7 

43 Cal-Sag Channel at Illinois Route 83 0 13 7  0 0 0 

52 Little Calumet River at Wentworth Ave. 0 13 7  0 0 0 

55 Calumet River at 130th St. 0 12 7  0 0 0 

56 Little Calumet River at Indiana Ave. 6 15 16  8 8 8 

57 Little Calumet River at Ashland Ave. 6 14 16  8 7 8 

59 Cal-Sag Channel at Cicero Ave. 7 14 16  7 8 8 

73 North Branch Chicago River at Diversey Ave. 7 8 9  6 8 8 

76 Little Calumet River at Halsted St. 7 14 16  7 7 8 

86 Grand Calumet River at Burnham Ave. 6 14 16  7 8 8 

96 North Branch Chicago River at Albany Ave. 6 9 8  6 9 8 

97 Thorn Creek at 170th St. 0 13 7  0 0 0 

99 South Fork, South Branch Chicago River at Archer Ave. 7 10 8  6 9 9 

100 Chicago River Main Stem at Wells St. 7 9 9  7 8 9 

108 South Branch Chicago River at Loomis St. 8 8 9  7 9 9 

112 North Shore Channel at Dempster St. 8 8 8  5 9 8 

 

 

3.1.1  Amplicon Based Microbial Community Sequencing Analysis 

 

 Microbial community structure was assessed using standard DNA extraction and 16S 

rRNA V4 region amplicon sequencing methods (see www.earthmicrobiome.org/emp-standard-

protocols; Caporaso et al. 2012). Genomic DNA was extracted using the Powersoil-htp 96 

WellDNA isolation kit (MoBio) with a 10-min (65C) incubation step modification (see 

http://www.earthmicrobiome.org/emp-standard-protocols/dna-extraction-protocol). For the 16S 

http://www.earthmicrobiome.org/emp-standard-protocols/dna-extraction-protocol/
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rRNA gene amplicon analysis, the V4 16S rRNA region was amplified in triplicate for all 

samples. The amplification primers were adapted from the Caporaso et al. (2010) protocol to 

include nine extra bases in the adapter region of the forward amplification primer that support 

paired-end sequencing on the HiSeq/MiSeq. PCR products were pooled at equimolar 

concentrations and cleaned using the UltraClean® PCR Clean-Up Kit (MoBio). The 16S rRNA 

amplicons were sequenced at the IGSB Next Generation Sequencing Core at Argonne National 

Laboratory using 151 bp paired-end sequencing on an Illumina MiSeq instrument. Paired 

(forward and reverse) raw sequences were de-multiplexed and quality filtered using Quantitative 

Insights into Microbial Ecology (QIIME, v.1.9.0) (Caporaso, Kuczynski et al. 2010) and 

VSEARCH (see https://github.com/torognes/vsearch). OTUs were clustered using cluster_otus in 

USEARCH (v.8.0) at 97% sequence similarity (Edgar 2010). OTU sequences were aligned using 

PYNAST (Caporaso, Bittinger et al. 2010). OTU taxonomy was determined using the RDP 

classifier retrained on the GreenGenes database (97% similarity) (Wang et al. 2007). A tree was 

constructed after filtering gaps from the aligned set of OTU representative sequences using 

FastTree (Price et al. 2009). The final OTU table did not contain any chimeric sequences or 

singletons. Downstream data analysis was conducted using QIIME (Caporaso, Kuczynski et al. 

2010) and Phyloseq and Vegan packages in RStudio (v.0.99). Core microbiomes, shared 

phylotypes, and SourceTracker analyses were performed in QIIME 1.9.0. 

 

 

3.1.2  Statistical Analysis 

 

 Statistical analysis was performed using the Vegan package or in SPSS (v.21.0) and 

processed in RStudio™. To avoid biases generated by differences in sequencing depth, the OTU 

table was rarified to an even depth of 5,000 sequences per sample when comparing all the 

samples from this study. In addition, OTUs represented by fewer than five reads were removed. 

Principal coordinate analysis (PCoA) plots were utilized to analyze all samples. Microbial alpha 

diversity between groupings such as sampling media, sampling year, and season were assessed 

for significance using a nonparametric two-sample t-test over 999 Monte Carlo permutations. 

Beta diversity of all samples was determined using weighted and unweighted UniFrac distance 

matrices. Procrustes analysis (least-square orthogonal mapping) was performed in QIIME 1.9.0 

to test for the goodness of fit (i.e., to determine whether the same beta-diversity conclusions can 

be derived regardless of the distance metric used to compare samples). Beta-diversity clustering 

was analyzed using analysis of similarity (ANOSIM) and permutational multivariate analysis of 

variance (PERMANOVA) for categorical variables. All water chemistry data utilized for the 

analysis of land-use effects on CAWS is reported and summarized in Table S2.  

 

 

3.2  DNA EXTRACTION, ASSEMBLY, AND ANNOTATION OF E. COLI GENOMES 

 

 E. coli and fecal coliforms were cultured from WRP effluent samples collected from May 

to April 2013 onto a selective culture medium (mTEC medium for E. coli and mFC medium for 

all other fecal coliforms). One colony per plate was randomly picked and its genomic DNA was 

extracted using the MoBio Powersoil DNA kit. A library was constructed for each sample using 

Nextera XT kit, which includes enzymatic fragmentation and simultaneous tagging of DNA 

followed by a bead-based sample normalization. Libraries from 14 samples were pooled and 

http://www.mobio.com/dna_fragment_in_solution/ultraclean-pcr-clean-up-kit.html
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sequenced on the Illumina Miseq platform. Sequences were quality trimmed using FASTX-

toolkit, and the cutadapt tool was used to remove adaptors from the reads. Read for each samples 

were assembled using Velvet, a de novo genome assembler. The constructed contigs (kmer = 47) 

were used to predict genes (ORF) through FragGeneScan and Prodigal. We checked for single 

copy genes (Wu et al. 2012) using the Amphora software, which detects 31 bacterial single-copy 

marker genes. The RAST online tool was used to annotate those genomes and classify them to 

their closest neighbor. 

 

 

3.3 ASSESSING MICROBIAL COMMUNITY STRUCTURE AND FUNCTION 

ACROSS THE CAWS USING METAGENOMIC SEQUENCE DATA 

 

 

3.3.1  Quality Filtering, Coverage Estimation, Metagenome Assembly and Annotation 

 

 Paired-end metagenome reads were quality trimmed using nesoni (see 

http://vicbioinformatics.com/nesoni.shtml) with the following parameters: minimum length = 75; 

quality cutoff = 30; adapter trimming = yes; and ambiguous bases = 0. Taxonomic and functional 

information was assigned to the individual metagenome reads using MetaPhlAn (Segata et al. 

2012) and MGRAST (Meyer et al. 2008), respectively. Individual read-based functional 

annotations were used for the functional diversity and richness estimation. Quality trimmed 

metagenomic reads were assembled into contigs using IDBA_UD (Peng et al. 2012) using k-mer 

length ranging between 31 and 41. Metagenome contigs with lengths less than 300 bp were 

excluded from further analysis. Metagenome contigs were assigned to various taxonomical levels 

using the NBC classifier (Rosen et al. 2008). Average metagenome coverage and sequence 

diversity was computed for each sample using Nonpareil (Rodriguez and Konstantinidis 2014) 

set at default parameters. AGS (average genome size) was computed for each metagenome 

sample using MicrobeCensus (Nayfach and Pollard 2015). FragGeneScan (Rho et al. 2010) was 

also used to predict the protein coding genes across metagenome contigs. Functional annotation 

of individual metagenome reads and contigs (ORFs) was performed using paladin 

(https://github.com/twestbrookunh/paladin) and prokka (Seemann 2014), respectively. 

 

 

3.3.2  Genotype Binning and Population-Level Comparative Genomics 

 

 In order to understand population-level dynamics (taxonomical, functional and 

evolutionary), we focused our further assembly efforts to bin population genomes (genotypes, 

not individual genomes) for this taxon. Tetranucleotide frequency usage and %G+C values were 

computed for each metagenome contig using 2TBinning (Saeed et al. 2012). Contigs were 

clustered into bins using hierarchical agglomerative clustering (HAC) performed with an inter-

profile correlation cutoff (R
2
) of 0.9. Chimeric contigs (i.e., %G+C profiles >± 1 of sample [bin] 

mean) were removed from the individual population bin. Population genome bins were further 

screened (Nmer = 12) for the contaminants (assigned to different taxons) using NBC Classifier 

(Rosen et al. 2008). Single copy marker gene based CNV (copy number variation) analysis 

(Kerepesi et al. 2014) was used to estimate the number of species across each bin. To predict the 

number of species across each site, single copy genes were clustered at 97% identity. 
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Pseudogenes were predicted across population genomes using GenePRIMP (Pati et al. 2010). 

Reconstructed population genomes were uploaded to the RAST server (Aziz et al. 2008) for 

automated genome annotation. 

 

  



23 

4  RESULTS 

 

 

4.1 ASSESSING MICROBIAL COMMUNITY STRUCTURE ACROSS THE CAWS 

OVER 3 YEARS USING 16S rRNA AMPLICON SEQUENCING 

 

QA/QC was conducted by analyzing a total of 196 blank samples comprising equipment 

blanks, filter blanks, and trip blanks for the three sampling years. Blanks serve as indicators of 

microbial contamination associated with any equipment or reagent used for sampling and 

analysis. The large majority of blank samples showed DNA concentrations below 1 ng/µL. 

Samples containing less than 0.2 ng/µL are typically considered sterile, because they contain 

DNA quantities that cannot be reliably amplified by a standard PCR reaction. Only seven of all 

the blank samples we sequenced and analyzed showed DNA concentrations greater than 1 ng/µL. 

Upon further analysis, we determined that these seven samples clustered with CAWS water 

column samples. We verified that these seven samples were extracted together with CAWS 

water samples. This suggests that a cross-contamination event occurred during one particular 

DNA extraction event. Because of the limited extent of this cross contamination (these blanks 

were confirmed to contain low quantities of OTUs and low microbial content observed by 

PicoGreen® DNA quantification Assays), and because  all results observed are consistent with 

previous results observed in the CAWS project and in other riverine systems, the QA/QC for the 

analyzed samples was deemed acceptable and the samples were maintained in the dataset. We do 

not believe that this contamination issue represented a significant problem for subsequent 

biological analysis. 

 

 Approximately 16.8 million high-quality 16S rRNA amplicons representing 24,107 

unique OTUs were generated from 876 CAWS samples collected from 2013 through 2015. 

Acidobacteria, Actinobacteria, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, 

Planctomycetes, Proteobacteria, and Verrucomicrobia were the 10 most abundant phyla, 

comprising approximately 90% of all reads (Figure S1A). All CAWS samples are characterized 

at the genus level in Figures S1B and S1C, which are organized by sampling medium and 

sampling site, respectively (the same data is shown in Tables S3A and S3B). Overall, 

Acinetobacter was the most abundant bacterial genus, comprising approximately 4% of all 

sequence reads.  

 

 Microbial diversity is examined as alpha diversity (the number and relative distribution of 

microbes within a sample) and beta diversity (the diversity across samples). Microbial 

community species diversity (alpha diversity) is measured by the number and distribution of 

species and was estimated using the Chao1, Shannon, and Inverse Simpson metrics. Chao1 is a 

measure of species richness (i.e., the number of species observed in a habitat). Shannon and 

Simpson indices are both positively correlated with species richness and evenness (the 

distributed abundance of those species); Shannon gives more weight to rare species, and 

Simpson is weighted toward abundant species. Overall, we observed no significant differences 

between samples as a function of the year of sampling (2013, 2014, 2015) (Figure 2), suggesting 

that the riverine ecosystem is stable over time. However, all diversity indices showed significant 

differences in alpha diversity between sediment and water column samples, with sediment 

samples showing significantly greater bacterial diversity than water column samples (p < 0.05, 
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Figure 2). The mixed liquor samples had significantly more alpha diversity than did influent 

sewage samples (p < 0.05, Figure 3). In addition, alpha diversity for microbial communities in 

the secondary treated effluent samples was comparable to that observed for the water column 

samples, including beach samples, samples taken upstream of WRP, and tributary samples. No 

significant differences were observed between Calumet and O’Brien secondary treated final 

effluent samples (Figure S2). 

 

 Figure 4 summarizes the effect of sampling month on alpha diversity for microbial 

communities in CAWS samples, including beach, influent sewage, mixed liquor, secondary 

treated effluent, and water column samples. Water column samples showed no significant 

differences in alpha diversity based on sampling month. However, significant differences based 

on sampling month were observed in secondary treated effluent samples; samples collected 

during the autumn months (September, October, November) were more diverse than those 

collected in other months (P < 0.05). Next, we investigated the alpha diversity of CAWS water 

column and sediment samples based on sampling month at each sampling site (Figures S3A and 

S3B). Notwithstanding the considerable variation in Shannon diversity, no significant difference 

in alpha diversity based on sampling month was observed for water column samples at any 

sampling sites (P > 0.05, Figure S3A). However, alpha diversity for water column samples 

collected in April was typically lower at each sampling site than those collected in other months. 

Alpha diversity for sediment samples was relatively stable across all sampling months at each 

site (Figure S3B). However, we observed considerable differences among sampling locations in 

alpha diversity for the sediment samples.  The location of each water sampling site relative to the 

two WRPs (upstream of the WRP vs. downstream) had an effect on the alpha diversity at these 

sites (Figure 5). Typically, CAWS sampling sites that are upstream of the two WRPs (including 

sites 112, 55, and 56) showed lower alpha diversity compared to those that are downstream of 

the WRPs. 

 

 Core microbes (bacterial genera shared across 90% of all samples) for water column, 

sediment, sewage, and secondary-treated effluent samples were determined (Table 3). Sewage 

samples harbored the largest core microbiome compared to secondary-treated effluent, sediment, 

and water column samples. Shared phylotypes between the different sampling media were 

computed after consolidation of samples taken from the same sampling medium across all 

sampling sites and sampling years. Pooled samples were rarified to an even depth. Pairwise 

comparison of OTU sharing between the different sampling media revealed the greatest 

phylotype overlap between secondary treated effluent and sewage samples, with sediment 

samples sharing the least number of OTUs with the other environments (Figure 6). Likewise, we 

computed shared phylotypes between water samples collected at sampling sites immediately 

upstream and downstream of the two WRPs at Calumet and O’Brien (Figure 7). At Calumet, 

sites 55 and 56 (upstream of the WRP) have the least overlap with secondary treated effluent 

samples and sites 57 and 76 (downstream of the WRP) have the most overlap with effluent 

samples. Likewise at O’Brien, site 112 (upstream) had the least overlap and sites 36 and 

73 (downstream) had the most overlap with secondary-treated effluent samples. Site 96 shared 

the least number of OTUs with the other O’Brien sites and we hypothesize that the water from 

the north branch of the Chicago River has a localized effect on the taxonomic composition at this 

site. 
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FIGURE 2  Summary of alpha diversity metrics (Chao1, Shannon, Inverse Simpson) for all CAWS 

samples summarized by sampling year. These are presented as Tukey boxplots wherein the first, 

second, and third quartiles represent 25, 50, and 75 percentiles, respectively. The upper whisker 

extends from the hinge to the highest value that is within 1.5 × IQR (inter-quartile range) of the 

hinge. The lower whisker extends from the hinge to the lowest value within 1.5 × IQR of the hinge. 

Data beyond the end of the whiskers are outliers and plotted in black. Figure demonstrates stable 

microbial communities across the three sampling years for each sampling medium. Sediment 

samples demonstrate the highest alpha diversity of all CAWS sampling media. 

 

 

 

FIGURE 3  Summary of alpha diversity metrics (Chao1, Shannon, Inverse Simpson) for CAWS 

water-associated samples by sampling year presented as Tukey boxplots. Figure demonstrates 

stable microbial communities across the three sampling years for each sampling medium.  
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FIGURE 4  Summary of Shannon diversity for CAWS water-associated samples by sampling 

month presented as Tukey boxplots. Water column samples show no significant differences in alpha 

diversity by sampling month. Secondary treated effluent samples showed significant differences in 

the autumn months (September, October, November) as compared to the other sampling months, 

with these months being more diverse. 

 

 

 

FIGURE 5  Summary of Shannon diversity for secondary treated effluent and CAWS water 

column samples by sampling site location (relative to the two WRPs at Calumet and O’Brien) 

presented as a Tukey boxplots. Sampling sites labeled with a hyphen refer to beach water and 

mixed liquor samples. CA and OBrien refer to Calumet and O’Brien WRPs, respectively. CAWS 

sampling sites that are upstream of the two WRPs typically showed lower alpha diversity compared 

to those that are downstream of the WRPs. 
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TABLE 3  Bacterial genera considered core (found in 90% of all CAWS samples) to specific  

sampling environments.  

 

Sewage Secondary treated effluent Sediment Water column 

    

Acinetobacter Acinetobacter Crenothrix Acinetobacter 

Arcobacter Agrobacterium Dechloromonas Dechloromonas 

Bacteroides Arcobacter Desulfobulbus Flavobacterium 

Bifidobacterium Bifidobacterium Desulfococcus Hydrogenophaga 

Blautia Candidatus Accumulibacter Rhodobacter Polynucleobacter 

Cloacibacterium Cloacibacterium Sulfuritalea Rhodobacter 

Comamonas Dechloromonas Thiobacillus Sediminibacterium 

Dechloromonas Giesbergeria Variovorax  

Desulfomicrobium Hydrogenophaga WCHB1-05  

Desulfovibrio Methylibium   

Enhydrobacter Pseudomonas   

Faecalibacterium Rhodobacter   

Flavobacterium Thiothrix   

Giesbergeria Tolumonas   

Hydrogenophaga Variovorax   

Paludibacter Zoogloea   

Parabacteroides    

Prevotella    

Propionivibrio    

Pseudomonas    

Rhodobacter    

Ruminococcus    

Sulfurospirillum    

Thauera    

Tolumonas    

Variovorax    

Vitreoscilla    

Zoogloea    
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FIGURE 6  Venn diagram of shared 

OTUs between the different sampled 

media. Pairwise comparison of OTU 

sharing between the different 

sampling media revealed the greatest 

phylotype overlap between secondary 

treated effluent and sewage samples. 

Sediment samples shared the least 

number of OTUs with the other 

environments. 

 

 

FIGURE 7  Shared OTUs between the different sampling sites located by the two WRPs at 

(A) Calumet and (B) O’Brien. This is displayed as a heat map wherein the quantity of shared OTUs 

is colored by a gradient with increased OTUs represented by light purple. In general, sites 

upstream of the WRP have the least overlap with secondary treated effluent samples and sites 

immediately downstream of the WRP have the most overlap with effluent samples. 
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 Microbial community clustering (beta diversity) of samples (a measure of the variance in 

community structure between samples) was investigated using weighted and unweighted 

UniFrac distance matrices applied in principle coordinate space. In addition, Procrustes analysis 

(least-square orthogonal mapping) was performed in QIIME to test whether the same beta-

diversity conclusions can be derived regardless of the distance metric used to compare samples 

(Muegge et al. 2011). A distance metric is a function that defines the distance between each data 

point of the sample set. This analysis attempts to stretch and rotate the points in one matrix, such 

as points obtained by principal coordinates analysis (PCoA), to be as close as possible to points 

in the other matrix, thus preserving the relative distances between points within each matrix. The 

goodness of fit, or M
2 

value, of the transformed datasets (weighted and unweighted UniFrac 

distances matrices) was determined over the first three dimensions. The statistical significance of 

the computed M
2 

value was measured based on 999 Monte Carlo iterations. An M
2 

value of 

0.483 (p = 0.00) was obtained, suggesting that the two distance metrics used were in remarkable 

agreement with each other.  

 

 Cluster comparisons between CAWS samples demonstrated that there were significant 

differences in microbial community composition across sampling media, including beach water, 

fish gut, fish mucous, mixed liquor, secondary treated final effluent, sediment, sewage, and water 

(ANOSIM and PERMANOVA using weighted and unweighted UniFrac, p = 0.001). This was 

also illustrated in the PCoA plot (across just the first two principal coordinates), wherein 

unweighted UniFrac beta-diversity comparisons yielded significant clustering by sampling 

medium (Figure 8A). Similar clustering patterns were observed when sediment samples were 

removed from unweighted UniFrac analysis (Figure 8B). Weighted UniFrac yielded similar 

results, with significant clustering by sample type (Figure S4). Using unweighted UniFrac 

distances, no significant differences in beta-diversities were observed based on sampling month 

or year (ANOSIM and PERMANOVA using weighted and unweighted UniFrac, p > 0.001) 

(Figures S5). This suggests that sampling media has a larger effect on microbial community 

composition than sampling month or year. 

 

 Finally, beta-diversity analysis (unweighted UniFrac) also demonstrated again that the 

influent sewage and secondary-treated final effluent samples clustered closely together, and were 

more similar to the CAWS water column samples than to sediment (Figure 8A). We continue to 

analyze these similarities in 2016 to confirm whether the overlap in influent sewage, secondary-

treated final effluent, and water column samples can be influenced by heavy rainfall or storm 

events; preliminary analysis is discussed later in this report. In 2016, we also plan to perform a 

canonical-correlation analysis (CCA) to determine the major environmental parameters 

responsible for driving the clusters observed in Figures 8A and 8B. 
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FIGURE 8  Principal coordinate plots showing sample similarities, organized by sample type, using 

unweighted UniFrac (A) for all CAWS samples, and (B) for only CAWS water-associated samples 

including beach, influent sewage, mixed liquor, secondary treated effluent, and water column 

samples. Cluster comparisons between CAWS samples showed significant differences in microbial 

community composition across the different sampling media. 

  

A 

B 
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4.1.1 Assessing Microbial Community Source across the CAWS for Human Fecal and 

Sewage Contamination over 2 Years  

 

Previously, we used the Bayesian statistical tool Source Tracker to determine the 

potential source of microbial OTUs associated with each sample location and date. This tool 

allows us to trace specific sequences back to known originators. The results of this analysis for 

2013 and 2014 are shown in Figure 9. To date, the analysis shows wide variability in the 

potential origin of bacterial OTUs across sites, with variability even between regions. Strikingly, 

the likelihood of human stool–associated OTUs being present in these samples was substantially 

lower than expected (Figure 9). Although source apportionment was shown to change 

dramatically over seasons and across sites, these sources provide evidence for potential 

contamination events. As shown in Figure 9, a large portion of the sequences are of unknown 

origin. In 2016, we plan to apply this tool to the 2015 data and cross-compare the results against 

the 2013–2014 data. We are also building new source databases that take into consideration the 

updated, relevant Earth Microbiome Project (EMP) data and all of the CAWS source data that 

we have generated (including influent, effluent, fish samples, etc.) so that the number of 

unknown sources is reduced. 

 

 

 

FIGURE 9  Source Tracker Analysis of 2013 and 2014 CAWS sites. Sample sites beginning 

with W represent water samples, while those beginning with S represent sediment. 

 

Main Stem 

North 

Calumet 

Source Tracker 



32 

All samples were further analyzed to determine the presence and distribution of human fecal and 

sewage indicators. Members of genera Bifidobacterium and Bacteroides, both representing 

human fecal contamination, were identified in secondary-treated effluent and water column 

samples (Figures S6 and S7). Likewise, members of the genera Acinetobacter, Arcobacter, and 

Thiothrix, all representing sewage contamination, were also identified in sediment and water 

column samples (Figures S8, S9, and S10). Sampling locations downstream of the two WRPs 

plants typically contained higher abundances of these indicators. This is exemplified in the 

presence of Thiothrix, which was only found at a relatively high abundance in water column 

samples downstream of the O’Brien WRP (site 36, Figure S11). The occurrence of most of these 

indicators upstream of the Calumet and O’Brien WRPs warrants further investigation into their 

origin at these sites. In particular, samples from CAWS location 86 (Grand Calumet River at 

Burnham St.) contained a high proportion of human fecal and sewage indicators. A possible 

explanation is that this location, which is upstream of the Calumet plant, might be receiving 

microbial loads from outside the Illinois border, where other large wastewater treatment facilities 

exist relatively nearby (e.g., the Hammond Sanitary District and the East Chicago wastewater 

treatment plant). Importantly, despite the conclusive occurrence of these fecal and sewage 

indicators, their presence (determined by 16S rRNA gene-based analysis) provides no 

information about their absolute abundance, virulence, pathogenicity, or viability. More 

information on the occurrence of virulence markers associated with E. coli is presented in 

section 4.1.3. Quantitative assessment methodologies such as qPCR assays are essential to relate 

the results from this analysis to any quantitative method commonly used for monitoring water 

quality. 

 

 

4.1.2  Genomic Characterization of E. coli Isolates 

 

 As part of the Chicago River system water quality monitoring program, MWRD routinely 

measures E. coli and fecal coliform counts by water filtration onto selective culture medium 

(mTEC medium for E. coli and mFC medium specific to fecal coliforms). Fourteen of the culture 

plates corresponding to WRP effluent samples collected from May to April 2013 were analyzed 

through whole genome sequencing (these samples represent the original filtration, as well as 1/10 

and 1/100 dilutions of these samples). Seven out of the 14 cultures presented no duplications of 

single-copy gene markers, suggesting that they represent the genome of a single organism. The 

others were thought to include more than one organism and therefore were not included in the 

subsequent analysis. Table 4 summarizes genome annotation results for the seven cultured 

isolates. Overall, these genomes showed an average of 0.03% genes attributed to the “Virulence, 

disease and defense” subsystem. Among this 0.03%, most of the genes (~75%) were attributed to 

“Resistance to antibiotics and toxic compounds,” while “Bacteriocins, ribosomally synthesized 

antibacterial peptide” was the second most abundant function (~15%). This component of the 

study was performed early on as a basic assessment of what types of E. coli were routinely being 

cultured on these plates. Because of budget constraints and prioritization, we decided not to 

pursue this aspect of the work. However, we would be willing to revisit this at a later date to 

determine whether isolates obtained prior to secondary effluent sterilization are different from 

those obtained after sterilization. We will reanalyze the existing genome constructs to determine 

whether the assemblies can be improved, and as a result, the taxonomic affiliations. 
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TABLE 4  Summary of the genome annotation results of seven samples from MWRD culture plates 

without marker duplication. 

Data type 

O’Brien, 

May 

(mTEC) 

 

O’Brien, 

May 

(mTEC, 

1/10) 

O’Brien, 

May 

(mFC, 

1/10) 

O’Brien, 

April 

(mTEC) 

O’Brien, 

April 

(mTEC, 

1/100) 

O’Brien, 

April 

(mTEC, 

1/100) 

Calumet, 

April 

(mTEC) 

        

Genome Size (bp) 4,502,378 4,758,466 5,023,097 4,589,399 4,791,369 4,722,285 5,535,441 

No. of Contigs  192 249 182 150 234 339 2870 

No. of Subsystems 579 576 583 581 586 585 496 

No. of Coding seqs. 4301 4672 4942 4429 4650 4615 5655 

No. of RNAs seqs. 29 31 29 50 57 66 30 

Closest Neighbor E. coli 

88.1467  

E. coli 

88.0221 

E. coli 

AA86  

E. coli 

88.1467  

E. coli 

PCN033  

E. coli 

88.1467  

E. coli 

PCN033 

 

 

4.1.3 Determining the Influence of Land Use on Water and Sediment Physicochemical 

Properties across the CAWS over 3 Years 

 

 Using the extensive metadata collected by MWRD for 2013, 2014, and 2015, we 

investigated the effects of land use type on CAWS water- and sediment-associated 

physiochemical properties. First, we utilized general linear modeling to test our hypothesis that 

land-use type has an effect on water- and sediment-associated physiochemical properties. This 

analysis showed that most water- and sediment-associated properties were significantly affected 

by land-use type. We then performed principal component analysis (PCA) on water- and 

sediment-associated properties to determine PC1 and PC2 scores for further analysis. Pearson’s 

correlation analysis was performed on PC scores and all land-use types to determine significant 

correlations between physiochemical properties and land-use type. Land-use types including 

road, residential, and open space significantly influenced water-associated properties (p <0 .05). 

Likewise, land-use types including commercial, institution, road, residential, and transport/utility 

significantly influenced sediment-associated properties. We also performed a Pearson’s 

correlation analysis on these land-use types and water- and sediment-associated properties to 

identify significant correlations (p < 0.05). Water-associated properties including dissolved 

oxygen (DO) and sulphate (SO4) were significantly correlated with road, residential, and open-

space land-use types (p < 0.05). Likewise, sediment-associated characteristics including 

concentrations of Ag, Cd, Cr, Pb, and Zn were significantly correlated with commercial, 

institution, road, residential, and transport/utility land-use types (Table S4).  

 

 Analysis of variance (ANOVA) was performed to look for significant differences 

between all CAWS sampling locations using the water- and sediment-associated physiochemical 

properties for each location across the 3 years. Interestingly, in water-column samples from 2013, 

CAWS location 86 had significantly greater total organic carbon (TOC) compared to other 

CAWS locations, other than locations 57, 96, and 99, which did not differ significantly from 

location 86. Likewise, DO was significantly lower at locations 86 and 99, compared to DO in 

other CAWS locations. In 2014, similar observations were made with a significant reduction in 

DO occurring at locations 86, 99, and 57 compared to the remaining CAWS locations. In 2015, 

sites 86 and 57 showed significantly higher concentrations of SO4 than any other location. In 
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2013 and 2015, the sediment at location 100 from that at all other CAWS locations; location 100 

was positively correlated with a higher concentration of Cd, which correlated with higher 

concentrations of some other metals, such as Ag, Cr, Ni, and Pb.  

 

 

4.1.4 Assessing the Effects of Wet/Dry Events on the CAWS-Associated Microbial 

Community 

 

 To assess the effects of wet/dry events, we classified each sampling date based on 

MWRD’s definitions as follows: 

 

1. Dry weather (<0.1-inch precipitation): Dry weather is defined by antecedent dry 

conditions for 2 days following a 0.25- to 0.49-inch precipitation event, 4 days following 

a 0.50- to 0.99-inch  event, and 6 days following a >1.0-inch event. 

 

2. Wet weather: Wet weather is defined by amount of precipitation and the occurrence of 

CSO events as follows: 

 Wet weather without CSOs (0.5–1.0 inches of precipitation). Water sampling to occur 

within 10 hours of the end of the rain event.  

 Wet weather with CSOs, including 125th Street Pump Station (>1.5 inches of 

precipitation).  Water sampling to occur within 10 hours of the end of the rain event.  

 

 A total of 597 water column samples, sediment samples, secondary-treated final effluent 

samples, and influent sewage samples were analyzed to investigate the effect of wet/dry events 

on the CAWS-associated microbial community.  

 

 Alpha diversity was measured using Chao1, Shannon, and Simpson metrics. Overall, we 

observed no significant differences in alpha diversity between wet and dry events (Figure S11). 

Likewise, no significant differences in alpha diversity were observed by sampling year 

(Figure S12A), sampling month (Figure S12B), sampling site (Figure S13), or sampling medium 

(Figure 10) as a function of wet/dry events. The box plots show the minimum and maximum 

values, the mean value and standard deviation.  The Y axis represents a combination of factors 

that are represented in the alpha diversity measure. 
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FIGURE 10  Summary of alpha diversity metrics (Chao1, Shannon, InvSimpson) summarized by 

sampling medium as a function of wet/dry events presented as Tukey boxplots. Figure 

demonstrates the lack of differences in alpha diversity between wet and dry events across the 

different sampling media. 

 

 

 Between-sample beta diversity was calculated using weighted and unweighted UniFrac 

distance applied in principal coordinate space. Procrustes analysis was also conducted to test 

whether the same beta diversity conclusions can be derived regardless of the distance metric used 

to compare samples. An M
2 

value of 0.464 (p = 0.00) was obtained, suggesting that the two 

distance metrics used were in an agreement with each other. Cluster comparisons between 

CAWS samples demonstrated that there were no significant differences in qualitative microbial 

community composition by wet/dry events (ANOSIM and PERMANOVA using weighted and 

unweighted UniFrac, p > 0.05; Figure 11). Likewise, no significant clustering was observed 

using unweighted UniFrac by sampling year or month as a function of wet/dry events (ANOSIM 

and PERMANOVA using weighted and unweighted UniFrac, p > 0.05; Figure S14A, S14B). 

Likewise, no significant differences were observed by wet/dry events for alpha- and beta-

diversity measures during the re-analysis of just the water column samples (334 of the total 597 

samples, Figure S15).  
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FIGURE 11  Principal coordinate plots showing similarities of samples by sampling medium and by 

wet/dry events using unweighted UniFrac. Cluster comparisons between CAWS samples 

demonstrated that there were no significant differences in qualitative microbial community 

composition by wet/dry events. 

 

 

4.2 ASSESSING MICROBIAL COMMUNITY STRUCTURE AND FUNCTION 

ACROSS THE CAWS USING METAGENOMIC SEQUENCE DATA 

 

 Shotgun metagenomes for 54 CAWS samples collected during 2013 and 2014 were 

sequenced; results ranged from 25 to 100 million quality trimmed reads. We will process 2015 

samples this year; shotgun metagenomics is time consuming. Samples were selected for shotgun 

metagenomics analysis by picking out of the three replications per sample for the 16S rRNA 

analysis the one that appeared the most representative upon analysis. The 16S rRNA gene 

rarefaction curves and metagenome-based sequence coverage (Rodriguez and Konstantinidis 

2014) and assembly analysis produced similar sequence complexity (abundance weighted 

average coverage patterns) trends across the water and sediment samples. Individual 

metagenome read-based analysis (genus level) revealed similar alpha diversity and richness 

patterns, as predicted earlier with 16S rRNA amplicon data (water = 3.6 ± 0.21; sediment = 5.3 ± 

2.1; and sewage = 3.6 ± 1.2). Water samples also had the smallest average genome size (2.9 Mb), 

which could indicate ecologically adapted, but abundant, oligotrophic genotypes (Konstantinidis 

and Tiedje 2005). The genera Rhodobacter, Novosphingobium, Synechococcus, 

Sediminibacterium, and Polynucleobacter were differentially abundant across water ecosystems. 
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 Polynucleobacter 16S rRNA sequences were resolved to the strain level using 

oligotyping (Eren et al. 2013); these oligotypes had a similar pattern of reduced beta diversity 

within sites from the same region, while similarities decreased between regions. Oligotyping was 

performed on the dominant Polynucleobacter OTU (OTU32), resulting in six oligotypes. The 

beta-diversity pattern of these Polynucleobacter oligotypes showed a significant positive 

correlation with the concentration of ammonia (BIOENV; UniFrac R2 = 0.7; p < 0.01), as did the 

abundance of oligotype 2 (R2 = 0.56; p < 0.05). Geographic localization (km, as a pairwise 

calculation of linear distance between the locations calculated using latitude and longitude) had 

no significant correlation with either OTU or oligotype distribution, suggesting that 

physicochemical factors—and hence local adaptation—shapes Polynucleobacter diversity. 

Contig-based diversity analysis revealed significant (two group t-test; Bonferroni correction, 

P < 0.05) viral diversity trends across water and sediment samples (i.e., Caudovirales water = 

3.5% ± 0.02 and sediment = 4.5 ± 0.31). Our future work includes the genotypic characterization 

of these strains. In addition, evolutionary trends will be analyzed for viral genotypes using 

nucleotide composition-based binning methods. 

 

 Using BLASTX analysis with the PATRIC database, protein-coding genes from 

78 shotgun metagenomes were cataloged to depict the functional potential and distribution of 

potential virulence genes for the microbial community in sediment and water across the CAWS. 

The virulence markers we identified that are associated with E. coli include subsets of functions 

associated with sites that were most likely to be contaminated with fecal material due to their 

proximity to secondary-treated final effluents (Table 5; Figure 12). Strikingly, the abundance of 

virulence marker genes for E. coli was very low for all sites, including those associated with 

secondary-treated final effluent locations. One possible explanation for this is low sequence 

coverage. However, we do not believe this explanation is adequate; first, this analysis was 

performed on raw sequence data, as well as assembled data (raw reads assembled into long 

sequences) and both of the analyses showed similar trends. Second, we analyzed the data using 

abundance-weighted average coverage analysis to estimate whether the applied sequencing depth 

was appropriate to sample the observed microbial diversity. Most of the samples were covered to 

75% to 90%. However, we are sequencing the metagenomic samples in 2015 at a greater depth 

of coverage to determine whether the E. coli organisms were just at extremely low abundance. 

Further analysis is needed to determine the temporal variance and spatial heterogeneity of these 

signals and to catalog the potential origin of existing E. coli signatures.  
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FIGURE 12  Virulence marker heat map for each metagenome from six selected locations closest to 

WRPs. Virulence genes are associated with E. coli in this analysis. 

 

 
TABLE 5  Number of sequences per metagenome identified as having originated from at least one 

of 47 E. coli virulence markers.
a
  

 

 

Site 36 Site 96 Site 73 Site 112 Site 99 Site 108 

       

No. Sequences 124 143 165 152 190 113 

a 
 Note: these abundances are not significantly different. 
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5  SUMMARY AND CONCLUSIONS 

 

 

 Based on the results described in the previous sections, we can summarize our results by 

drawing several conclusions. 

 

 First, microbial communities show a distinct distribution pattern across the 17 different 

sampling locations, and between sampling mediums (water, sediment, effluent, mixed liquor, 

sewage, etc.). For example, as expected, microbial communities in water are significantly 

different from those found in sediment. These communities appear to be stable (in their diversity 

and composition) between years (2013, 2014, and 2015) and between monthly sampling events. 

This suggests that the microbial communities within the CAWS are inherently stable and, 

therefore, perturbations that affect that stability will be easy to monitor. This provides us with a 

baseline for assessing ecosystem stability as a biomarker of system-scale changes in response to 

management practice change. Our analysis also shows that microorganisms associated with WRP 

effluent from secondary treatment can be tracked downstream, and typically show increased 

abundance in proximity to the secondary-treated final effluent location. These include human 

fecal indicators, such as Bifidobacterium and sewage contamination indicators, such as 

Acinetobacter. It will be interesting to determine whether this finding changes, and how, with the 

planned disinfection of the secondary treatment effluent in 2016 and subsequent years, and 

whether chlorination will provide different results than ultraviolet light disinfection. We also 

intend to explore the genotypic diversity, for particular indicator organisms. We hypothesize that 

taxa such as Bifidobacterium and Acinetobacter may still be present following disinfection, but 

will be represented by different genotypes. We will assess this using shotgun metagenomic 

genome reassembly, cultured isolate genotyping, and comparative genomic analysis. 

 

 Second, land-use types have a significant effect on CAWS water- and sediment-

associated physiochemical properties. Road, residential, and open space significantly influenced 

water-associated properties; likewise, land-use types including commercial, institution, road, 

residential, and transport/utility significantly influenced sediment-associated properties. These 

properties will have concomitant influences on the microbial community structure. We will 

continue to analyze these patterns in 2016, and currently have no recommendations from this 

analysis.  

 

 Third, our analysis showed no significant differences in microbial alpha or beta diversity 

between wet/dry events. This will be further investigated; it may be caused by the lack of 

changes in the overall community structure. This is represented by no change in the membership 

of observed organisms but changes in the absolute abundances of key organisms such as fecal- 

and sewage contamination-indicator bacteria. To validate this hypothesis, qPCR assays are 

essential. Further analysis is scheduled for 2016. 

 

 Fourth, metagenome analysis revealed similar microbial community trends (alpha 

diversity and dominant taxa, e.g., Polynucleobacter) as observed with amplicon sequence 

analysis. Shotgun metagenome analysis also revealed low E. coli abundance and low E. coli 

associated virulence marker abundance at all sites, including those associated with final effluent 
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samples from O’Brien and Calumet WRPs. We will continue to assess these patterns through 

deeper metagenomic coverage of community patterns in the 2015 data. 

 

 Finally, from the results above we can conclude that our analytical methods are 

promising tools to understand microbial sources that can provide insightful information on the 

ecology of the CAWS. The work conducted in 2014 and 2015, which analyzed samples from 

2013 through 2015, is a unique example of a descriptive baseline of the microbial ecology of a 

large scale riverine system such as the CAWS, which will enable us to determine important 

impacts of future management approaches. Many results of our analysis are still poorly 

understood because of the exploratory nature of this effort, and will be elucidated as more 

information will become available. 
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6  PROPOSED ACTIVITIES FOR 2016 

 

 

 To continue this study, we propose that work in the years 2016 to 2019 include the 

following tasks. Some of these tasks were part of the original work scope devised at the onset of 

the project, and others are recommended based on the experience and results obtained from the 

Phase I study period. Proposed activities include: 

 

 Continuing the analysis of the Ambient Water Quality Monitoring program as planned to 

capture potential impacts of disinfection on the microbial communities in the CAWS. 

 

 Incorporating microbial data, particularly the relative abundance of human fecal and 

sewage contamination indicators into the DuFlow model. This data will be normalized by 

alpha diversity to allow comparisons across multiple sites and sampling medium (influent 

sewage vs. secondary treated final effluent vs. CAWS water column samples), 

irrespective of the differences in the microbial diversity observed by site or sampling 

medium. 

 

 Developing reliable markers or indicators for the identification of fecal contamination by 

animals including dogs, geese, and other wildlife of interest. We have existing databases, 

but are continuing to collect regionally relevant microbial samples to improve source 

apportionment for taxa in the CAWS. In addition, we will investigate methods such as 

oligotyping to differentiate between E. coli strains from different hosts. This is important 

because it will provide insight into the source of these strains, differentiating between 

human and animals. In addition, we will design qPCR assays to quantify the absolute 

abundances of these marker organisms, particularly during wet/dry events. 

 

 Determining the nature of the contribution made by sediments to CAWS water during 

storm events. We are particularly interested in understanding sediment as an additional 

source of fecal and sewage contamination indicators during storm events due to sediment 

resuspension into the water column. We have developed a directional statistical approach 

to help interpret observed patterns across these events, which will be applied here. 

 

 Determining the major environmental parameters that most closely describe the 

community variance using CCA. We also continue to analyze these similarities to 

confirm whether the overlap in influent sewage, secondary-treated final effluent, and 

water column samples can be influenced by heavy rainfall or storm events. 

 

 Determining appropriate sequencing depth, and experimental approach for the reliable 

and accurate detection of E. coli using standard addition experiments. In addition, we are 

investigating multiple specialized databases to ensure E. coli detection and further resolve 

these short reads to strain-level resolution. 

 

 Applying Source Tracker to data from all sampling years. For this, we are building new 

source databases that take into consideration the updated EMP data and all of the CAWS 

source data that we have generated so that the number of unknown sources is reduced. 
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 Completing the processing and data generation for the 2015 CAWS samples for 

metagenome sequencing and analysis. Samples representing different sampling media, 

sampling months, and wet/dry events will be selected. 
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PART 2—2013–2015 CHICAGO AREA WATERWAYS (CAWS) LAND USE AND LAND 

COVER ANALYSIS, AMBIENT WATER QUALITY, AND HYDRAULIC MODELING 

 

Herbert Ssegane, Argonne National Laboratory 

 

 

1  INTRODUCTION, OBJECTIVES, AND TASKS 

 

 The main objective of this study is to characterize microbial sources in Chicago Area 

Waterways (CAWS) and determine their spatial and temporal occurrence. Potential sources 

include effluent from water reclamation plants (WRPs), direct stormwater runoff, and combined 

sewer overflows (CSOs). Recognized as significant additional sources for micro-pollutants in 

surface waters, CSO events occur when stormwater runoff exceeds the capacity of the sewer 

network, resulting in the discharge of untreated wastewater into surface waters. This study uses 

synoptic sampling at pre-determined locations to collect water and sediment samples for 

microbial and metagenomics analysis based on pre-defined wet or dry weather conditions. 

Because of the intermittent nature of sampling along CAWS, the spatial and temporal occurrence 

of microbial pollution may not be fully captured. Also, flow and stage monitoring is not carried 

out at the same sampling sites along CAWS, yet hydraulic parameters (e.g., flow, stage, and 

velocity) may be critical drivers of microbial resuspension, growth, and die-off. Therefore, to 

extract flow, velocity, and stage data at each sampling site, hydraulic modeling is needed. 

Accordingly, hydraulic modeling enables the integration of microbial data into a modeling 

framework to provide analytical and predictive assays of spatial and temporal microbial 

occurrences. 

 

 This task had several objectives and activities: 

 

1. Define and assess land use categories of interest based on the Chicago Metropolitan 

Agency for Planning (CMAP) land use inventory. 

 

2. Assess sampling protocol to quantify frequency of wet and dry sampling events. 

 

3. Characterize flow metrics at the microbial sampling sites with hydraulic modeling of 

CAWS. This objective was met with two activities.  

 

a. Data management and streamlining from multiple sources, such as the U.S. 

Geological Survey (USGS) and the Metropolitan Water Reclamation District of 

Greater Chicago (MWRD) 

b. Development of hydraulic model 
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2  MATERIALS AND METHODS 

 

 

2.1  ASSESSMENT OF LAND USE AND LAND COVER DISTRIBUTION 

 

 Classification of land use and land cover (LULC) was based on major watersheds in 

Cook County and the drainage areas contributing to surface runoff at each sampling site. The 

drainage areas were created from a 10 ft.-digital elevation model (DEM) using the deterministic 

eight nodes (D8) algorithm as implemented in ArcGIS 10.2. The D8 algorithm estimates a 

specific catchment area by routing flow to only one dominant downhill direction. On relatively 

flat areas, however, flow may be proportionally distributed to multiple directions. The DEM was 

generated from 3 ft.-light detection and ranging (LIDAR) data for Cook County. Because of the 

sewer network, these drainage areas represent the potential source of surface runoff for each site 

because actual surface drainage areas are influenced by the sewer network. LULC classes at each 

site were assessed to quantify similarity of LULC distributions across sampling locations. This 

work was done to provide an overall assessment of potential differences in LULC that could be 

correlated with specific microbiome and analytical differences in the samples collected. A 

hypothesis is that surface runoff will be different based on predominant LULC. The base LULC 

data used in this analysis is the 2010 CMAP data, available at http://www.cmap.illinois.gov/ 

data/land-use. The CMAP data was reclassified into 11 major categories: agricultural, 

commercial, construction, industrial, institution, non-parcel road, open space, residential, 

transport or utility, vacant, and water. 

 

 

2.2  CHARACTERIZATION OF AMBIENT WATER QUALITY 

 

 Ambient water quality data for 2012 and 2013 was grouped into water chemistry and 

microbial indicator data. Water chemistry data included 15 parameters: temperature, acidity (pH), 

alkalinity, suspended solids (SS), total oxygen carbon (TOC), dissolved oxygen (DO), total 

dissolved solids (TDS), total phosphorus (TP), total Kjeldahl nitrogen (TKN), chlorophyll, 

chlorine (Cl), nitrates (NO3), ammonia (NH3), sulfates (SO4), and fluoride (F). Water chemistry 

data was relatively complete, while the microbial indicators included two parameters of fecal 

coliform and Escherichia coli (E. coli). The objective for analyzing ambient water quality data 

was to identify sites for which ambient water quality (water chemistry or microbial indicators) 

were relatively similar based on distribution of the parameters in the two groups.  

 

 Sites with similar water quality were identified through classification using the k-means 

algorithm for cluster analysis (Hartigan and Wong 1979, Jain 2010) with no spatial constraint, so 

that similarity across sites was not restricted to proximity to either the Terrence J. O’Brien 

(North Branch) WRP or the Calumet WRP. This classification uses the geometric mean of the 

annual data. For 2013, water chemistry data with 15 parameters created a [12 x 15] data matrix 

of 12 sampling sites per each of the 15 parameters, thus 12 samples (n) each with 15 dimensions 

(d). This data structure is subject to the curse of dimensionality problem, d > n, for classification 

purposes (Keogh and Mueen 2010, Chen 2009, Pestov 2000), such that, classification results 

may not be statistically sound and reliable. The curse of dimensionality is more prevalent when 

the number of samples (n) is less than the number of variables for each sample (p). It is 

http://www.cmap.illinois.gov/data/land-use
http://www.cmap.illinois.gov/data/land-use
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considered a curse of dimensionality because the value of n needed to train an estimator grows 

exponentially as p increases for one to get a good classification or clustering. If it is ignored, 

samples may be considered to be close to each other yet they are far in the d-space.  To reduce 

the dimensionality of the dataset, a correlation matrix was generated and one of the correlated 

parameters (Pearson correlation, which is r ≥ 0.7 or r ≤ -0.7) was excluded from subsequent 

classification. This process reduced 15 parameters to 10. The water chemistry parameters 

excluded from this classification included alkalinity, TOC, TKN, Cl, and SO4 because they were 

all highly correlated to TDS and NH3. 

 

 

2.3  2013–2015 WEATHER CLASSIFICATION OF SITE SAMPLING DATES 

 

 Hourly rainfall data for the 25 rain gauges included in the Cook County Precipitation 

Network were acquired from the Illinois State Water Survey. Thiessen polygons were generated 

to determine the closest rain gauge for each sampling site. Weather classification was based on 

MWRD’s definitions. 

 

1. Dry weather (<0.1 inch precipitation): Dry weather is defined by antecedent dry 

conditions for 2 days following a 0.25–0.49 inch event, 4 days following a 0.50–0.99 

inch event, and 6 days following a >1.0 inch event. 

 

2. Wet weather:  

 Wet weather without CSOs (0.5–1.0 inch precipitation). Water sampling to occur 

within 10 hours of the end of the rain event.  

 Wet weather with CSOs, including 125th Street Pump Station (>1.5 inch 

precipitation).  Water sampling to occur within 10 hours of the end of the rain event.  

 

 

2.4  DUFLOW MODELING 

 

 Hydraulic modeling for 2013 built on earlier work of Dr. Charles Melching (CAWS 

DuFlow model). The 2007–2008 CAWS DuFlow model was provided by the MWRD.  The 

original model network used the Chicago Sanitary and Ship Canal (CSSC) at Romeoville, IL 

(USGS gauging station number 05536995) as a downstream boundary condition. However, the 

construction at the U.S. Army Corps of Engineers of an electric fish barrier in 2006 led to 

cessation of streamflow monitoring at the gauge. Therefore, the gauge on CSSC near Lemont, IL 

(05536890) was used as the new downstream boundary in this project (Figure 13)  

 

 Accordingly, the DuFlow network was modified to represent the new boundary 

conditions. Hydraulic modeling accounted for the system’s major inflows and outflows. Major 

inflows are influenced by control structures, pumping stations, tributaries, and CSO discharges. 

The control structures include Wilmette Pumping Station, Chicago River Controlling Works, and 

T.J. O’Brien Lock and Dam. Pumping stations include the Racine Avenue Pumping Station and 

the 95th, 122nd, and 125th pumping stations. Major tributaries include the North Branch 

Chicago River (NBCR) and Little Calumet (LC), while minor tributaries include Tinley, 

Midlothian, Mill, Navajo, Natalie, and East and West Stony creeks. 
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 Missing stage and flow data were calculated based on data from neighboring gauged 

tributaries and adjusted for the correlation strength between the target gauge and the neighboring 

gauged tributaries (Figure 14). Local temporal relationships were established using data recorded 

immediately before and after the missing data using multivariate adaptive regression splines 

(MARS) (Friedman 1991, Sánchez-Borrego 2011). MARS were implemented in R using the 

“Earth” package. Post-processing to minimize data anomalies was achieved by visual inspection 

of the calculated and filled-in data and the graphs. 

 

 Upstream and downstream boundary conditions included the North Shore Channel at 

Wilmette (05536101), Chicago River Main Stem at Columbus Drive (05536123), Calumet River 

at the T.J. O’Brien Lock and Dam (05536358), Racine Avenue Pump Station (RAPS), Little 

Calumet River at South Holland (05536290), and CSSC near Lemont (05536890). Refer to 

Figure 13b for the respective spatial locations. Stage (H) and discharge data (Q) were provided 

by MWRD, as was CSO event data. The approximately 105 unique CSO events in 2013 across 

CAWS were represented by a system of 44 discharge points. Flow at the locks was estimated by 

aggregating discharge hourly data due to navigation, blockages, leakages, and discretionary 

diversions. All stage data was referenced to the City of Chicago Datum of 579.48 ft. 

 

 

2.5  MODEL VALIDATION 

 

 The stage data on CSSC near Lemont was used as the only boundary condition. 

Therefore, the flow data at this station was used to validate the accuracy of the model. Model 

performance was evaluated using the Nash-Sutcliffe efficiency (-∞ ≤ NSE ≤ 1), the linear 

regression coefficient of determination (0 ≤ R
2
 ≤ 1), and the percent bias (-100 ≤ PBIAS ≤ 100). 

The optimal value is 1 for NSE and R
2
 and 0 for PBIAS. A positive or negative PBIAS is 

indicative of model under- or overprediction (Moriasi 2007). 
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FIGURE 13  (a) Thiessen polygons showing the sampling sites and the closest rain gage and 

(b) location of USGS gages for stage and flow data. 
 

 

 

FIGURE 14  Examples of calculated and filled data at a 15-minute time interval for 2013–2014. 
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3  RESULTS 

 

 

3.1  LAND USE AND LAND COVER DISTRIBUTION BY SAMPLING LOCATION 

 

 Figure 15 shows the delineated drainage area for each sampling location. The sampling 

sites at the outlets of the two tributaries of NBCR and LC (sites 96 and 57) have the largest 

drainage areas while the Chicago River main stem (site 100) has the smallest drainage area. The 

built environment dominates the land use at each site except site 86, which is dominated by open 

space with vegetation. 

 

 

 

FIGURE 15  Boundaries of drainage areas contributing 

surface runoff at sampling sites in 2013.  
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3.2 INFLUENCE OF MAIN INFLOWS ON THE SPATIAL VARIATION OF WATER 

CHEMISTRY AND MICROBIAL DATA ALONG CAWS 

 

 Figure 16 shows sites that had a similar water chemistry for 2013, which was a wet year 

compared to 2012. Similar chemistries are given the same site color. Based on classification 

results, the water chemistry of the two major tributaries NBCR (site 96) and LC (site 57) are 

similar. Compared to other sites, they have the lowest water temperature and NH3 and the 

highest levels of SS, pH, chlorophyll, and TDS. The water chemistry of the site along the Grand 

Calumet (site 86) and the site near the Racine Avenue Pumping Station (site 99) are similar with 

the lowest levels of DO, pH, SS, and the highest levels of NH3. Irrespective of the water 

chemistry upstream of the WRPs, it changes after inflows from both WRPs and is similar 

downstream both WRPs. Therefore, inflows from the two tributaries NBCR and LC do not 

appear to dramatically influence the water chemistry. Effluent from the WRPs appears to 

influence downstream chemistry such that the chlorophyll levels were lowered to the minimum, 

while both NO3 and TP increased to the highest levels. Sites 112 and 56 show lake water effects 

and have the highest temperature and lowest levels of TDS, NO3, TP, and Fl.  

 

 Figure 17 shows which sites have similar microbial indicators. Site 36, which is close to 

the T.J. O’Brien WRP had the highest loadings of both fecal coliform and E. coli. The microbial 

indicators at this site were significantly higher than at all other sites. Analysis of samples post-

disinfection will be compared to the results to-date to determine the impact of disinfection on 

water quality. As with the water chemistry at sites 112 and 56, the corresponding microbial 

indicators of both sites were similar. Sites near the lake (112 and 56), NBCR (96), and CRCW 

(100) had the lowest levels of microbial indicators. Site 73 had relatively lower levels compared 

to site 36, which is indicative of dilution effects of inflows from NBCR and die-off along the 

river. Future work will allow us to model how far downstream there could be detectable levels of 

fecal indicators based on flow conditions, temperature, and other parameters. Microbial 

indicators of inflow from LC and effluent from Calumet WRP are relatively lower than microbial 

loadings at downstream site 59. This observation is indicative of additional microbial inputs 

possibly from surface runoff or CSOs. 
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FIGURE 16  Classification results for sites where water chemistry is relatively similar. The left 

figure shows standardized values of water chemistry parameters and corresponding trends that 

define the similarity for each group. Sites with the same color indicate similar water chemistry. The 

line colors, left, and point colors, right, match the classified groups. 

 

 

 

FIGURE 17  Classification results for sites where water microbial indicators are relatively similar. 

Sites with the same color indicate similar microbial indicators. The left figure shows standardized 

values and corresponding trends that define the similarity for each group. The line colors, left, and 

point colors, right, match the classified groups. 
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3.2.1  Site Incidences of Dry and Wet Sampling Events 

 

 Table 6 shows the number of sampling events classified by wet and dry weather 

conditions for each site. Refer to Appendix A for detailed classification for each sampling date 

and site. There were more wet sampling events in 2014 for sites in the Calumet region. However, 

the wet and dry sampling events were evenly split in 2015. There were no samples collected in 

2013 for sites 43, 52, 55, and 97, which were added in 2014. Refer to Section 2.3 for weather 

classification categories 0–10. 

 

 
TABLE 6  Summary of weather classification on sampling dates.  

 

 

2013  2014  2015
a
 

Site 

 

WET DRY  WET DRY  WET DRY 

         

112 4 3  4 1  3 3 

108 3 4  0 4  3 4 

100 3 4  0 4  3 4 

99 3 4  0 2  3 4 

96 3 4  1 4  2 4 

86 3 4  10 2  8 6 

76 3 4  9 2  8 6 

73 3 4  1 4  2 5 

59 3 4  8 3  7 7 

57 3 4  8 4  8 6 

56 2 3  8 2  8 6 

36 4 3  4 1  3 4 

43 --- ---  6 4  4 3 

52 --- ---  10 2  5 2 

55 --- ---  9 2  6 1 

97 --- ---  10 2  5 2 

a  The 2015 data summary consists of sampling dates before October. 

 

 

3.3  2013 AND 2014 COMBINED SEWER OVERFLOW (CSO) EVENTS 

 

 CSO events for 2013 and 2014 were analyzed to guide the selection of representative 

CSOs in the hydraulic model because inclusion of all CSOs does not guarantee model accuracy 

and is computationally expensive. Analysis focused on the representative CSOs in the Calumet, 

Stickney, and O’Brien (North Shore) regions for both years with emphasis on the frequency of 

events (number of events per year by a single CSO location). This analysis excluded data in the 

Des Plaines watershed. Refer to Figure 18 for the spatial distribution of CSO locations and the 

corresponding 2013 number of events. Figure 18 illustrates that more CSO events occurred 

around the Stickney and O’Brien regions than the Calumet region. Table 7 summarizes 2013 and 

2014 CSO events. 
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FIGURE 18  CSO event frequency for 2013. 

 

 
TABLE 7  2013 and 2014 CSO event summary. 

 
 

 

3.4  VALIDATION OF DUFLOW STREAMFLOW SIMULATIONS 

 

 Figure 19 visually compares streamflow observations (USGS data) and DuFlow 

simulations for a gage on the CSSC near Lemont, IL for 2013. The graphs and model 

performance metrics (R
2
=0.73, NSE=0.72, and PBIAS=-6.0%) are indicative of DuFlow’s ability 

Parameters 2013 2014 Comment (2013/2014)

Unique CSO discharge points 105 63 Excluding  Des Plaines

Max # of events 64 48 DS-M79 / CD-S21

Max event duration (hrs) 40.7 20.5 CD-S39 / CD-S2 & CD-S4

Minimum event duration (min) 5 2 CD-S43 / CD-S43
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to capture both the magnitude and sequence of flows at this gaged station. A coefficient of 

determination of 0.73 (R
2
=0.73) indicates that the model captured 73% of the hourly streamflow 

variability. A PBIAS of -6.0% indicates that, on average, the model over-estimates hourly 

streamflow. However, a PBIAS within ±10% is indicative of an excellent model (Moriasi 2007). 

Figure 20 illustrates the accumulation of flow along CAWS on a day with confirmed CSO events 

throughout the stream network. 

 

 

 

FIGURE 19  Observed (USGS) and simulated (DuFlow) streamflow on CSSC near Lemont (USGS 

gaging station 05536890). The simulation results are at an hourly time step. The bottom two graphs 

are magnifications of the two shaded regions in the top graph.  
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FIGURE 20  A snapshot of spatial difference in streamflow (in m
3
/s) (a) along CAWS on April 18, 

2013 at midnight and (b) CAWS sections with confirmed CSO events by MWRD.  

 

 

3.4.1 Streamflow Simulations at Sampling Sites 

 

 Appendix A1 contains the average and maximum streamflow for each site for the 2013 

sampling dates. The values were based on hourly outputs from DuFlow. Other hydraulic 

parameters such as stage and velocity are not presented. They will only be considered depending 

on their conditional relevance in the presence of streamflow for microbial predictive analytics. 

 

  

a)
b)

04/18/2013@00:00
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4  ACTIVITIES PLANNED FOR 2016 

 

 

4.1  DUFLOW MODELING AND PREDICTIVE ANALYTICS  

 

 Current and planned activities include the development of the interface between the 2013 

model data and a predictive neural network-based model that incorporates the data on selected 

microbial genera with hydraulic data to obtain a preliminary, prototype microbial predictive 

model for forecasting and analysis of alternative management scenarios. Once that is developed 

and tested, planned activities include the expansion of the entire predictive model to also include 

the years 2014-2019. 
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4.2 THREE-STEP APPROACH TO INCORPORATE MICROBIAL AND HYDRAULIC 

DATA 

 

1. Concurrent hydraulic and water quality modeling, DNA extraction, quantitative PCR 

assays and quantification 

a. This work will continue to generate microbial community data for the years 2016-

2019  

 

2. Extraction of hydrologic and water quality parameters at sampling points as explanatory 

variables for predictive microbial model 

a. For the year 2013, data on flow, stage and CSO will be extracted from the DuFlow 

model to reflect likely conditions at the ambient water quality monitoring sampling 

points throughout the CAWS  

b. In future years, this will be repeated for the subsequent years when the model will be 

available for those years. 

 

3. Integration of microbial predictive models into Hydraulics and Hydrology for forecasting 

and analysis of alternative management scenarios 

a. To integrate the microbial data with the hydraulic data a neural network model will be 

generated which will use the variables shown in Figure 21 as possible explanatory 

variables for microbial variances in the probabilistic model.  

 

 Figure 21 illustrates the proposed conceptual framework for generating the conditional 

probabilities between specific microbial abundance and environmental variables, and Figure 22 

illustrates the artificial neural network to capture the interactions between microbial taxa and 

their environment. This modeling approach is stochastic, meaning it accounts for uncertainty in 

the interactions, and assumes that microbial community patterns share mathematically 

describable relationships with environmental conditions.  
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FIGURE 21  Conceptual Bayesian network for generating probabilities between specific 

microbial abundance and environmental variables.  

 

 

 

FIGURE 22  Microbial Assemblage Predictive neural network structure. 
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APPENDICES 

 

 

APPENDIX A1 

 

 
TABLE S1  2013 sampling dates, weather classification, average and maximum flow (Qavg and 

Qmax) at monitoring sites. 

Site Date 

 

MWRD 

weather 

classification 

Qavg 

(m3/s) 

Qmax 

(m3/s)  Site Date 

MWRD 

weather 

classification 

Qavg 

(m3/s) 

Qmax 

(m3/s) 

           

112 

4/8/2013 WET -0.268 0.206  

86 

4/22/2013 DRY 0.185 0.266 

5/13/2013 DRY 0.035 0.659  5/28/2013 WET 0.677 4.644 

6/10/2013 WET -0.020 0.656  6/24/2013 WET 0.001 0.019 

7/15/2013 DRY 0.033 0.714  7/29/2013 DRY 0.002 0.010 

8/12/2013 WET -0.068 0.345  8/26/2013 DRY 0.000 0.004 

9/16/2013 WET 0.128 1.913  9/30/2013 WET 0.153 0.212 

10/14/2013 DRY 0.041 0.755  10/28/2013 DRY 0.170 0.425 

108 

4/15/2013 WET 15.0 23.4  

76 

4/22/2013 DRY 27.8 29.6 

5/20/2013 WET 25.8 89.9  5/28/2013 WET 20.9 31.7 

6/17/2013 DRY 19.6 36.5  6/24/2013 WET 14.8 21.6 

7/22/2013 WET 29.1 39.2  7/29/2013 DRY 28.6 31.3 

8/19/2013 DRY 28.3 33.9  8/26/2013 DRY 25.0 28.1 

9/23/2013 DRY 28.0 36.5  9/30/2013 WET 18.2 22.5 

10/21/2013 DRY 6.1 16.8  10/28/2013 DRY 7.3 16.6 

100 

4/15/2013 WET 16.3 22.1  

73 

4/8/2013 WET 17.7 20.6 

5/20/2013 WET 14.8 31.2  5/13/2013 DRY 9.4 11.8 

6/17/2013 DRY 19.6 32.8  6/10/2013 WET 13.1 16.3 

7/22/2013 WET 28.6 39.5  7/15/2013 DRY 10.3 13.1 

8/19/2013 DRY 28.0 34.5  8/12/2013 DRY 10.0 12.3 

9/23/2013 DRY 27.2 33.2  9/16/2013 WET 11.7 17.1 

10/21/2013 DRY 7.1 17.8  10/14/2013 DRY 8.6 11.1 

99 

4/15/2013 WET 0.007 0.127  

59 

4/22/2013 DRY 77.5 92.1 

5/20/2013 WET -9.036 0.083  5/28/2013 WET 36.3 51.5 

6/17/2013 DRY 0.008 0.157  6/24/2013 WET 18.0 26.2 

7/22/2013 WET -0.004 0.042  7/29/2013 DRY 29.6 35.3 

8/19/2013 DRY -0.005 0.049  8/26/2013 DRY 25.8 31.8 

9/23/2013 DRY -0.006 0.047  9/30/2013 WET 19.7 27.1 

10/21/2013 DRY 0.009 0.096  10/28/2013 DRY 7.6 23.4 

96 

4/8/2013 WET 5.3 6.4  

57 

4/22/2013 DRY 39.1 52.6 

5/13/2013 DRY 1.4 1.4  5/28/2013 WET 10.4 16.1 

6/10/2013 WET 2.3 2.5  6/24/2013 WET 2.5 2.7 

7/15/2013 DRY 1.3 1.6  7/29/2013 DRY 0.7 0.9 

8/12/2013 DRY 1.4 2.3  8/26/2013 DRY 0.7 1.0 

9/16/2013 WET 3.7 6.3  9/30/2013 WET 1.2 1.3 

10/14/2013 DRY 1.0 1.1  10/28/2013 DRY 0.7 1.2 
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Site Date 

 

MWRD 

weather 

classification 

Qavg 

(m3/s) 

Qmax 

(m3/s)  Site Date 

MWRD 

weather 

classification 

Qavg 

(m3/s) 

Qmax 

(m3/s) 

           

36 

4/8/2013 WET 12.7 13.5  

56 

6/24/2013 WET 4.9 12.5 

5/13/2013 DRY 8.3 9.3  7/29/2013 DRY 21.0 23.3 

6/10/2013 WET 10.9 12.1  8/26/2013 DRY 18.4 21.0 

7/15/2013 DRY 9.1 10.1  9/30/2013 WET 11.3 14.9 

8/12/2013 WET 8.9 9.6  10/28/2013 DRY 0.6 11.1 

9/16/2013 WET 8.0 10.8      

10/14/2013 DRY 7.5 8.6           
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APPENDIX A2 

 

 
TABLE S2  2014 sampling dates and weather classification at monitoring sites. 

Site Date 

 

MWRD weather 

classification  Site Date 

MWRD weather 

classification 

       

112 

4/14/2014 WET  

43 

5/21/2014 WET 

5/12/2014 WET  5/27/2014 DRY 

6/9/2014 WET  6/23/2014 WET 

7/14/2014 WET  7/1/2014 WET 

11/10/2014 DRY  7/22/2014 DRY 

108 

5/19/2014 DRY  7/28/2014 DRY 

7/21/2014 DRY  8/5/2014 WET 

8/18/2014 DRY  8/22/2014 WET 

11/17/2014 DRY  8/25/2014 WET 

100 

5/19/2014 DRY  11/24/2014 DRY 

7/21/2014 DRY  

52 

4/15/2014 WET 

8/18/2014 DRY  4/28/2014 WET 

11/17/2014 DRY  5/21/2014 WET 

99 
8/18/2014 DRY  5/27/2014 WET 

11/17/2014 DRY  6/23/2014 WET 

96 

4/14/2014 WET  7/1/2014 WET 

5/12/2014 DRY  7/22/2014 WET 

6/9/2014 DRY  7/28/2014 DRY 

7/14/2014 DRY  8/5/2014 WET 

11/10/2014 DRY  8/22/2014 WET 

86 

4/15/2014 WET  8/25/2014 WET 

4/28/2014 WET  11/24/2014 DRY 

5/21/2014 WET  

55 

4/15/2014 WET 

5/27/2014 WET  4/28/2014 WET 

6/23/2014 WET  5/21/2014 WET 

7/1/2014 WET  5/27/2014 WET 

7/22/2014 WET  6/23/2014 WET 

7/28/2014 DRY  7/1/2014 WET 

8/5/2014 WET  7/22/2014 WET 

8/25/2014 WET  7/28/2014 DRY 

8/22/2014 WET  8/5/2014 WET 

11/24/2014 DRY  8/25/2014 WET 

        11/24/2014 DRY 
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Site Date 

 

MWRD weather 

classification  Site Date 

MWRD weather 

classification 

       

76 

4/28/2014 WET  

97 

4/15/2014 WET 

5/21/2014 WET  4/28/2014 WET 

5/27/2014 WET  5/21/2014 WET 

6/23/2014 WET  5/27/2014 WET 

7/1/2014 WET  6/23/2014 WET 

7/22/2014 WET  7/1/2014 WET 

7/28/2014 DRY  7/22/2014 WET 

8/5/2014 WET  7/28/2014 DRY 

8/25/2014 WET  8/5/2014 WET 

8/22/2014 WET  8/22/2014 WET 

11/24/2014 DRY  8/25/2014 WET 

73 

4/14/2014 WET  11/24/2014 DRY 

5/12/2014 DRY  

56 

4/28/2014 WET 

6/9/2014 DRY  5/21/2014 WET 

7/14/2014 DRY  6/23/2014 WET 

11/10/2014 DRY  7/1/2014 WET 

59 

4/28/2014 WET  7/22/2014 WET 

5/21/2014 WET  7/28/2014 DRY 

5/27/2014 WET  8/5/2014 WET 

6/23/2014 DRY  8/25/2014 WET 

7/1/2014 WET  8/22/2014 WET 

7/22/2014 WET  11/24/2014 DRY 

7/28/2014 DRY  

36 

4/14/2014 WET 

8/5/2014 WET  5/12/2014 WET 

8/25/2014 WET  6/9/2014 WET 

8/22/2014 WET  7/14/2014 WET 

11/24/2014 DRY  11/10/2014 DRY 

57 

4/15/2014 WET     

4/28/2014 WET     

5/21/2014 WET     

5/27/2014 WET     

6/23/2014 WET     

7/1/2014 WET     

7/22/2014 WET     

7/28/2014 DRY     

8/5/2014 WET     

8/25/2014 WET     

8/22/2014 WET     

11/24/2014 DRY         
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APPENDIX A3 

 

 
TABLE S3  2015 sampling dates and weather classification at monitoring sites. 

Site Date 

 

MWRD 

weather 

classification  Site Date 

MWRD 

weather 

classification 

       

112 

4/13/2015 WET  

43 

4/10/2015 WET 

5/11/2015 DRY  5/21/2015 DRY 

6/8/2015 WET  6/11/2015 DRY 

7/13/2015 WET  6/16/2015 WET 

8/10/2015 DRY  7/14/2015 WET 

9/14/2015 DRY  7/17/2015 WET 

10/12/2015   8/14/2015 DRY 

11/9/2015    

52 

4/10/2015 WET 

108 

3/16/2015 DRY  5/21/2015 DRY 

4/20/2015 WET  6/11/2015 WET 

5/18/2015 DRY  6/16/2015 WET 

6/15/2015 WET  7/14/2015 WET 

7/20/2015 DRY  7/17/2015 WET 

8/17/2015 WET  8/14/2015 DRY 

9/21/2015 DRY  

55 

4/10/2015 WET 

10/19/2015   5/21/2015 DRY 

11/17/2015    6/11/2015 WET 

100 

3/16/2015 DRY  6/16/2015 WET 

4/20/2015 WET  7/14/2015 WET 

5/18/2015 DRY  7/17/2015 WET 

6/15/2015 WET  8/14/2015 WET 

7/20/2015 DRY  

97 

4/10/2015 WET 

8/17/2015 WET  5/21/2015 DRY 

9/21/2015 DRY  6/11/2015 WET 

10/19/2015   6/16/2015 WET 

11/17/2015    7/14/2015 WET 

99 

3/16/2015 DRY  7/17/2015 WET 

4/20/2015 WET  8/14/2015 DRY 

5/18/2015 DRY  

56 

3/23/2015 WET 

6/15/2015 WET  4/10/2015 WET 

7/20/2015 DRY  4/27/2015 DRY 

8/17/2015 WET  5/21/2015 DRY 

9/21/2015 DRY  5/26/2015 WET 

11/17/2015    6/11/2015 WET 

96 

4/13/2015 DRY  6/16/2015 WET 

5/11/2015 WET  6/22/2015 DRY 

6/8/2015 WET  7/14/2015 WET 

7/13/2015 DRY  7/17/2015 WET 

8/10/2015 DRY  7/27/2015 DRY 

9/14/2015 DRY  8/14/2015 WET 

10/12/2015   8/24/2015 DRY 

11/9/2015   9/28/2015 DRY 

    10/26/2015  

        11/23/2015   
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Site Date 

MWRD 

weather 

classification  Site Date 

 

MWRD 

weather 

classification 

       

86 

3/23/2015 WET  

59 

3/23/2015 WET 

4/10/2015 WET  4/10/2015 WET 

4/27/2015 DRY  4/27/2015 DRY 

5/21/2015 DRY  5/21/2015 DRY 

5/26/2015 WET  5/26/2015 WET 

6/11/2015 WET  6/11/2015 WET 

6/16/2015 WET  6/16/2015 WET 

6/22/2015 DRY  6/22/2015 DRY 

7/14/2015 WET  7/14/2015 WET 

7/17/2015 WET  7/17/2015 WET 

7/27/2015 DRY  7/27/2015 DRY 

8/14/2015 DRY  8/14/2015 DRY 

8/24/2015 WET  8/24/2015 DRY 

9/28/2015 DRY  9/28/2015 DRY 

10/26/2015   10/26/2015  

11/23/2015    11/23/2015   

76 

3/23/2015 WET  

57 

3/23/2015 WET 

4/10/2015 WET  4/10/2015 WET 

4/27/2015 DRY  4/27/2015 DRY 

5/21/2015 DRY  5/21/2015 DRY 

5/26/2015 WET  5/26/2015 WET 

6/11/2015 WET  6/11/2015 WET 

6/16/2015 WET  6/16/2015 WET 

6/22/2015 DRY  6/22/2015 DRY 

7/14/2015 WET  7/14/2015 WET 

7/17/2015 WET  7/17/2015 WET 

7/27/2015 DRY  7/27/2015 DRY 

8/14/2015 WET  8/14/2015 WET 

8/24/2015 DRY  8/24/2015 DRY 

9/28/2015 DRY  9/28/2015 DRY 

10/26/2015   10/26/2015  

11/23/2015    11/23/2015  

73 

3/9/2015 DRY  

36 

3/9/2015 DRY 

4/13/2015 DRY  4/13/2015 WET 

5/11/2015 WET  5/11/2015 DRY 

6/8/2015 WET  6/8/2015 WET 

7/13/2015 DRY  7/13/2015 WET 

8/10/2015 DRY  8/10/2015 DRY 

9/14/2015 DRY  9/14/2015 DRY 

10/12/2015   10/12/2015  

11/9/2015     11/9/2015   
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SUPPORTING INFORMATION 



 

  



  


