The Tunnel and Reservoir Plan (TARP), also known as "Deep Tunnel," is a system of deep, large diameter tunnels and vast reservoirs designed to reduce flooding, improve water quality in Chicago area waterways and protect Lake Michigan from pollution caused by sewer overflows. TARP captures and stores combined stormwater and sewage that would otherwise overflow from sewers into waterways in rainy weather. This stored water is pumped from TARP to water reclamation plants (WRPs) to be cleaned before being released to waterways. The four TARP tunnel systems are designed to flow to three huge reservoirs, and the system will have a capacity of 20.55 billion gallons when complete. That is 5,480 gallons for each person in its service area. One of the largest civil engineering projects on earth, TARP has been extremely effective and widely emulated since the initial tunnels went online in 1981.

The Challenge: Combined Sewer Overflows

Like many older cities, Chicago has a combined sewer system in which sanitary sewage from homes, offices and industries drain into the same pipes as stormwater. Most of these combined sewers were built before wastewater treatment existed and were designed to drain directly into rivers. In the early 20th century, the Metropolitan Water Reclamation District of Greater Chicago (MWRD) built large intercepting sewers to redirect sewers to newly built WRPs to clean the water. This system works well in dry weather, but in heavy rains the intercepting sewers and WRPs can reach capacity and result in combined sewer overflows (CSOs) to the river, impairing water quality and contributing to flooding.

Planning TARP

As development spread through the Chicago area in the early 20th century, paved surfaces directed increasing amounts of stormwater runoff into the combined sewer system. By the 1960s, Chicago area sewers were overflowing to the river more than 100 days a year and flooding had become a persistent issue. In 1967, officials of the MWRD, the state of Illinois, Cook County and the city of Chicago formed the Flood Control Coordinating Committee to find a solution to the region’s flooding and water pollution problems caused by combined sewer overflows. The committee considered 50 alternatives and selected TARP as the most cost-effective approach to providing maximum benefits with minimal negative impacts. The most obvious solution, replacing combined sewers with separate storm and sanitary pipes, was determined to be too costly, disruptive to communities, and unable to provide flood relief. The MWRD officially adopted TARP as the area’s plan to comply with federal and state water quality standards in 1972.

Construction and Status

TARP tunnel construction began in 1975. Construction was planned so that completed portions of the system could be put into operation as work continued elsewhere. The scale and depth of the project was unlike anything previously undertaken and required innovative approaches to tunneling. Newly-developed tunnel boring machines were used instead of traditional blasting to minimize vibrations, expedite progress, reduce damage to surrounding rock and lower costs for long sections of tunnels. To protect groundwater from leakage and protect the tunnels from water infiltration, cracks in the limestone tunnels went online in 1981.
were sealed with grout and the tunnels were lined with concrete. The Upper Des Plaines Tunnel System, located near O’Hare Airport, went online in 1981 and the entire tunnel system was operational in 2006.

The smallest of the TARP reservoirs, Gloria Alitto Majewski Reservoir was completed in 1998. Thornton Reservoir was completed in 2015 and yielded nearly instant benefits. The first stage of McCook Reservoir went online in 2017. Partnering with commercial quarries has allowed these huge reservoirs to be completed economically and efficiently.

Benefits

TARP has been extremely successful in preventing flooding and pollution caused by combined sewer overflows and will be more effective when the larger reservoirs are online. Since the tunnels became operational, CSOs have been reduced from an average of 100 days per year to 50. Since Thornton Reservoir came online in 2015, CSOs have been nearly eliminated. As water quality has improved, our waterways have become home to increasingly healthy and diverse fish populations and popular destinations for recreation. Other cities around the world have taken note of TARP’s success and are now undertaking similar deep tunnel projects.

How TARP Works

- **Local Combined Sewers** run beneath neighborhood streets and carry both stormwater and sanitary sewage. Originally designed to flow directly into rivers, they are now “intercepted” by MWRD intercepting sewers. In heavy rains, these sewers can overflow combined stormwater and sewage to the river.
- **Combined Sewer Outfall**
- **TARP Tunnels** redirect sewer overflow water into tunnels hundreds of feet below. Dropshafts and tunnels generally follow the paths of waterways.
- **TARP Dropshafts** are divided in two parts to allow air to exit as water enters the system at high velocity.
- **TARP Pumping Stations** pump water back up from tunnels and reservoirs to water reclamation plants.
- **Intercepting Sewers** carry water to water reclamation plants to be cleaned.
- **Floating Solar Powered Aerators** add oxygen to the top layer of water to control odors.
- **TARP Reservoirs** store billions of gallons of water until water reclamation plants have capacity to clean it.
- **Water Reclamation Plants** clean and recover resources from wastewater. Cleaned water is released to the river.
- **Grout Curtains** seal reservoir walls to protect groundwater.