

Metropolitan Water Reclamation District of Greater Chicago

CECIL LUE-HING RESEARCH AND DEVELOPMENT COMPLEX 6001 WEST PERSHING ROAD CICERO, ILLINOIS 60804-4112

Edward W. Podczerwinski, P.E. Director of Monitoring and Research

April 29, 2022

Mr. Michael Summers, P.G. Groundwater Section Manager Bureau of Water/Public Water Supplies Illinois Environmental Protection Agency <u>Michael.Summers@Illinois.gov</u>

Dear Mr. Summers:

Subject: Transmittal of the Report "Tunnel and Reservoir Plan McCook Reservoir Annual Groundwater Monitoring Report for 2021"

Please find attached the report entitled "Tunnel and Reservoir Plan McCook Reservoir Annual Groundwater Monitoring Report for 2021." The report was prepared for transmittal to the Illinois Environmental Protection Agency in accordance with the Chicagoland Underflow Plan McCook Reservoir Groundwater Monitoring and Analysis Plan.

If you have any questions or would like additional information, please contact Mr. Benjamin Morgan at (708) 588-3743 or MorganB@mwrd.org.

Very truly yours,

Albert Con

Albert E. Cox, Ph.D. Environmental Monitoring and Research Manager Monitoring and Research Department

AC:BM:lf Attachment cc: Mr. B. O'Neil, USACE Mr. E. Podczerwinski Dr. C. O'Connor Dr. H. Zhang BOARD OF COMMISSIONERS

Kari K. Steele President Barbara J. McGowan Vice President Marcelino Garcia Chairman of Finance

Cameron Davis Kimberly Du Buclet Josina Morita Chakena D. Perry Eira L. Corral Sepúlveda Mariyana T. Spyropoulos

TUNNEL AND RESERVOIR PLAN MCCOOK RESERVOIR ANNUAL GROUNDWATER MONITORING REPORT FOR 2021

By

Benjamin Morgan Environmental Soil Scientist

Guanglong Tian Principal Environmental Scientist

Albert Cox Environmental Monitoring and Research Manager

Heng Zhang Assistant Director of Monitoring and Research Environmental Monitoring and Research Division

Monitoring and Research Department Edward W. Podczerwinski, Director

April 2022

TABLE OF CONTENTS

Page

LIST OF TABLES	ii
LIST OF FIGURES	iii
LIST OF ABBREVIATIONS	iv
ACKNOWLEDGMENTS	V
DISCLAIMER	V
TUNNEL AND RESERVOIR PLAN MCCOOK RESERVOIR ANNUAL GROUNDWATER MONITORING REPORT FOR 2021	1
McCook Reservoir Site Description	1
Groundwater Monitoring Program	1
Background Monitoring	3
High-Stage/Fill Event Monitoring	3
Low-Stage Semiannual Monitoring	3
Monitoring Activities for 2021	4
Analytical Results for 2021	4
High-Stage/Fill Event Monitoring	4
Low-Stage Semiannual Monitoring	13
REFERENCES	24

LIST OF TABLES

Table No.		Page
1	Analysis of Groundwater Sampled from Monitoring Well G-01 at the McCook Reservoir Site During High-Stage Operation in 2021	5
2	Analysis of Groundwater Sampled from Monitoring Well G-02 at the McCook Reservoir Site During High-Stage Operation in 2021	6
3	Analysis of Groundwater Sampled from Monitoring Well G-03 at the McCook Reservoir Site During High-Stage Operation in 2021	7
4	Analysis of Groundwater Sampled from Monitoring Well G-04 at the McCook Reservoir Site During High-Stage Operation in 2021	9
5	Analysis of Groundwater Sampled from Monitoring Well G-05 at the McCook Reservoir Site During High-Stage Operation in 2021	11
6	Analysis of Routine Parameters in Groundwater Sampled from Each Monitoring Well at the McCook Reservoir Site During Two Low-Stage Semiannual Samplings in 2021	14
7	Analysis of Inorganic and Radioactive Parameters in Groundwater Sampled from Each Monitoring Well at the McCook Reservoir Site During the First Low-Stage Semiannual Sampling in August and September 2021	16
8	Upper Tolerance Limits for Inorganic and Radioactive Parameters in Each Monitoring Well at the McCook Reservoir Site Established by Background Monitoring Prior to Operation in January 2018	17
9	Analysis of Organic Parameters in Groundwater Sampled from Each Monitoring Well at the McCook Reservoir Site During the First Low- Stage Semiannual Sampling in August and September 2021	18
10	Upper Tolerance Limits for Organic Parameters in Each Monitoring Well at the McCook Reservoir Site Established by Background Monitoring Prior to Operation in January 2018	20

LIST OF FIGURES

Figure No.		Page
1	McCook Reservoir Site and Monitoring Well Locations	2

LIST OF ABBREVIATIONS

°C	degrees Celsius
Ag	silver
As	arsenic
В	boron
Ba	barium
Be	beryllium
CCD	Chicago City Datum
Cd	cadmium
CFU	colony forming units
Cl-	chloride
CN	copernicium
Co	cobalt
COD	chemical oxygen demand
Cr	chromium
CSF	combined sewer flow
Cu	copper
District	Metropolitan Water Reclamation District of Greater Chicago
EC	electrical conductivity
F	fluorine
Fe	iron
Hg	mercury
IAC	Illinois Administrative Code
IEPA	Illinois Environmental Protection Agency
MAP	Groundwater Monitoring and Analysis Plan
Mn	manganese
NH3 ⁻ -N	ammonia nitrogen
Ni	nickel
NO ₃ -N	nitrate nitrogen
Р	phosphorus
Pb	lead
Ra	radium
Reservoir	Chicagoland Underflow Plan McCook Reservoir
Sb	antimony
Se	selenium
SO_4^{2-}	sulfate
TARP	Tunnel and Reservoir Plan
TDS	total dissolved solids
TDS	total dissolved solids
T1	thallium
TL	tolerance limit
TOC	total organic carbon
USACE	United States Army Corps of Engineers
Zn	zinc

ACKNOWLEDGMENTS

The McCook Reservoir groundwater monitoring is conducted by the Monitoring and Research Department of the Metropolitan Water Reclamation District of Greater Chicago (District) under the Groundwater Monitoring and Analysis Plan prepared by the United States Army Corps of Engineers. Organic analyses were performed by Environmental Monitoring Technologies, Inc., inorganic analyses by the District's Analytical Laboratories Division, and fecal coliform analyses by the District's Analytical Bacteriology Laboratory. Special thanks to Mr. James Rivera and Ms. Barbara Covic for collecting samples and to Ms. Laura Franklin for typing and formatting this report.

DISCLAIMER

Mention of proprietary equipment and chemicals in this report does not constitute endorsement by the Metropolitan Water Reclamation District of Greater Chicago.

TUNNEL AND RESERVOIR PLAN MCCOOK RESERVOIR ANNUAL GROUNDWATER MONITORING REPORT FOR 2021

McCook Reservoir Site Description

The Chicagoland Underflow Plan McCook Reservoir (Reservoir), located within Lyons Township in western Cook County, is part of the Tunnel and Reservoir Plan (TARP). The Reservoir was designed to reduce flooding in the Chicago area by providing storage of combined sewer flow (CSF) during storms. The Reservoir construction has been divided into two phases. Phase I of the Reservoir is complete and has been in operation since January 2018. Phase II of the Reservoir is still under construction and is anticipated to begin operation in 2029. When the capacity of the sewer systems is exceeded, the CSF is conveyed to the Reservoir by the TARP tunnels for storage until it can be treated at the Stickney Water Reclamation Plant.

The groundwater protection system surrounding the Reservoir is designed to prevent exfiltration of CSF from the Reservoir to the surrounding groundwater during high-stage conditions and control seepage of groundwater into the Reservoir during low-stage conditions. The groundwater protection system consists of a double-row grout curtain that completely surrounds Phases I and II of the Reservoir to a depth of -320 ft Chicago City Datum (CCD). The grouted area has achieved permeabilities of less than 1 lugeon.

Groundwater Monitoring Program

A Groundwater Monitoring and Analysis Plan (MAP) (United States Army Corps of Engineers [USACE], 2014), including seven groundwater monitoring wells around the perimeter of the Reservoir (Figure 1), was developed by the USACE in coordination with the District and approved by the Illinois Environmental Protection Agency (IEPA) to monitor groundwater conditions and the performance of the groundwater protection system.

The objectives of the monitoring program as specified in the MAP are:

- To characterize local background groundwater quality by measuring Field, Routine, Organic, and Inorganic parameters prior to Reservoir operation.
- To assess potential exfiltration of CSF effluent into groundwater by measuring Field and Routine parameters while the Reservoir is in high-stage operation.
- To determine potential migration of groundwater contaminants into the Reservoir system from the surrounding area by measuring Field, Routine, Organic, and Inorganic parameters while the Reservoir is in low-stage operation.
- To evaluate long-term changes in groundwater quality associated with Reservoir operations.

FIGURE 1: MCCOOK RESERVOIR SITE AND MONITORING WELL LOCATIONS

To evaluate changes in groundwater quality, monitoring wells are installed 100 feet outside the grout curtain. However, due to physical constraints near the Reservoir where it would be impossible to install or access wells, some are located greater than 100 feet from the grout curtain. In the summer of 2016, a USACE investigation discovered that wells G-04 and G-05 exhibited signs of a compromised annular seal. These wells were re-drilled during fall 2017 and became operational for monitoring in November 2017.

Background Monitoring. Background monitoring began in the first quarter of 2016. Groundwater samples collected during the background monitoring program were analyzed for concentrations of organic and inorganic parameters and groundwater quality indicators based on Illinois Class I Potable Resource Groundwater standards constituents in 35 Illinois Administrative Code (IAC) 620.410 (Class I) and Illinois General Use Water Quality standards constituents in 35 IAC 302 B. Background monitoring results were used to determine upper tolerance limits (TLs) in each well for all measured groundwater quality parameters to enable future assessment of groundwater protection system efficacy. The TL for all parameters were established in 2019 using all background data and the statistical approaches recommended in the MAP. The details are documented in the Appendix of the 2018 McCook annual report.

High-Stage/Fill Event Monitoring. High-stage monitoring is initiated when water elevation in the Reservoir exceeds -265 ft CCD. The initial high-stage/fill event threshold of -280 ft CCD was increased to -265 ft CCD in January 2018 to reflect the Reservoir operating conditions. During high-stage monitoring, samples are collected every 14 days until the Reservoir water elevation falls below -265 ft CCD. The intent of the high-stage program is to monitor time-series data when the Reservoir is under large positive (outward) gradients that have the potential to exfiltrate CSF water. For the current Phase I of the Reservoir operation during high-stage monitoring events, only wells G-01, G-02, G-03, G-04, and G-05 must be monitored. The measurements and analyses include four Field and nine Routine Parameters as specified in Table 2 of the MAP.

Low-Stage Semiannual Monitoring. Low-stage monitoring is implemented on a semiannual basis to collect water quality data when the Reservoir is acting as a regional groundwater sink. Low-stage sampling requires that water elevation in the Reservoir is at or below the "wet bottom" elevation (-265 ft CCD). Low-stage samples can only be collected after low-stage operation has been maintained for at least four days to ensure that monitoring results are characteristic of the regional groundwater and do not reflect re-infiltration of groundwater constituents that exfiltrated during the high-stage operation. The first low-stage semiannual sampling occurs during the second quarter of each year (April-June), analyzing all eighty-one (81) Field, Routine, Organic, and Inorganic Parameters as specified in Tables 2, 3, and 4 of the MAP. The second low-stage semiannual sampling occurs during the Field and Routine Parameters. The two low-stage semiannual samplings require collecting samples from all seven wells.

This is the 2021 report under the groundwater monitoring program for the Reservoir. It presents field activities and analytical results for groundwater monitoring of Reservoir operations from January 1, 2021 – December 31, 2021.

Monitoring Activities for 2021

During 2021, there were 30 high-stage events at the Reservoir. One event lasted for over five weeks and required three samplings, but only one sampling could be conducted due to a staffing shortage as staff needed to be allocated to the high-priority concurrent TARP tunnel fill event sampling. Two events lasted for three weeks, requiring two samplings each. Two additional events lasted over two weeks, requiring two samplings each, but only one sampling could be conducted before new high-stage events began. One additional event lasted three weeks, requiring two samplings, but the second sampling was not done because priority was given to sampling for the second semiannual monitoring. The remaining 24 high-stage events lasted for less than two weeks, requiring one sampling each, but for six of these events, the duration was too short to allow for sampling before the next new high-stage event began. The last event of 2021 (Event 30) started on December 27, but could not be sampled due to a staffing shortage. Thus, a total of 24 highstage samplings were conducted throughout 2021. Due to pump malfunctioning in wells G-01 and G-02, only 15 and 20 samplings, respectively, could be conducted at these wells. The Reservoir operated at high stage for a total of 256 days in 2021. Water samples were collected and immediately analyzed in the field for pH and electrical conductivity, and water temperature and depth were recorded. Samples were packed in ice and transported to District laboratories for analysis of the nine Routine parameters.

The first low-stage semiannual monitoring sampling began during the third quarter of 2021 on August 19 and 20, 2021, after the Reservoir had been at low stage for over four days. Five of the seven wells were sampled before the Reservoir entered a high-stage operation. The sampling of the remaining two wells and well duplicate for the first low-stage semiannual monitoring was continued on September 8, 2021, after the Reservoir had again been at low stage for over four days. Water sample pH, electrical conductivity, temperature, and elevation were recorded in the field. Aliquots of each sample were packed in ice and transferred to Environmental Monitoring and Technologies, Inc. for analysis of Organic constituents in accordance with requirements specified in the MAP. Additional aliquots of each sample were packed in ice and taken to the District's laboratories for analysis of Routine and Inorganic parameters.

The second semiannual sampling was conducted on November 18 and 19, 2021, following low-stage operation at the Reservoir for over four days. Five of the seven wells were sampled. Wells G-01 and G-02 could not be sampled due to pump malfunctioning. Field parameters for each water sample were measured. Water samples were packed in ice and brought to the District's laboratories for analysis of Routine parameters.

Analytical Results for 2021

High-Stage/Fill Event Monitoring. All analytical results for all high-stage samples collected from wells G-01, G-02, G-03, G-04, and G-05 and the duplicate samples are reported in <u>Tables 1</u> through <u>5</u>, respectively. Analytical results that exceed Class I standards are shown in bold text in each table. Analytical results were compared to upper TLs based on the background monitoring data.

Fill Event	Sample Date	pH	EC mS/m	TDS	TOC	COD	Cl-	SO42- mg/L-		NH ₃ -N	Hardness	FC CFU/100 mL	Temp. °C	Elevation ft CCD
Class I Sta Upper TL ³	ndard 1	6.5–9.0 5.3–8.1	NS ² 586	1,200 3,845	NS 2.7	NS 40	200 1,280	400 730	NS 0.13	NS 2.8	NS 1,607	NS <1	NS 15.7	NS -106
1	01/07/21	6.9	198	1,558	6.0	41	449	326	0.24	3.4	836	<1	13.2	-118
2/3	01/20/21	6.8	189	1,610	NRR^4	27	447	316	0.21	3.6	832	<1	13.4	-117
4	01/28/21	6.9	152	1,542	< 5.0	34	431	303	0.32	3.7	860	<2	13.2	-119
5	02/10/21	6.8	193	1,406	< 5.0	20	602	385	0.25	3.7	868	<1	13.2	-119
6.1	02/23/21	6.8	192	1,574	< 5.0	30	459	320	0.25	3.5	858	<1	13.4	-119
6.1DUP	02/23/21	6.8	192	1,582	<5.0	<20	458	319	0.28	3.5	863	<1	13.4	-119
6.2	03/09/21	6.8	196	1,534	<5.0	30	449	303	0.29	3.8	826	<1	13.6	-117
7	03/18/21	6.9	185	1,694	< 5.0	23	455	314	0.31	3.8	861	<1	13.2	-117
8	04/08/21	6.9	195	1,542	< 5.0	32	461	324	0.22	3.5	839	<1	13.7	-112
9	04/15/21	6.8	166	1,464	< 5.0	24	430	304	0.22	3.5	870	<1	13.8	-117
10	04/29/21	6.9	175	1,658	< 5.0	23	439	321	0.16	3.2	868	<1	13.7	-119
10DUP	04/29/21	6.9	175	1,632	< 5.0	27	441	323	0.16	3.1	905	<1	13.7	-119
11/12/13	05/11/21	6.8	187	1,634	< 5.0	23	415	308	0.26	3.6	797	<1	13.7	-119
14	05/25/21	6.8	190	1,620	< 5.0	23	422	314	0.18	3.6	899	<1	13.9	-119
15.1	06/22/21	6.8	167	1,664	< 5.0	<20	411	319	0.16	3.3	883	<1	14.1	-119
15.2	07/12/21	6.9	156	1,664	< 5.0	23	411	331	0.28	3.8	881	<1	13.7	-116
22/23	08/31/215	6.9	168	1,552	< 5.0	36	423	334	0.18	3.4	898	<1	14.0	-117

TABLE 1: ANALYSIS OF GROUNDWATER SAMPLED FROM MONITORING WELL G-01 AT THE MCCOOK RESERVOIR SITE **DURING HIGH-STAGE OPERATION IN 2021**

¹Illinois Administrative Code (IAC) Title 35 Part 620.410 Class I Standards. Bold text indicates exceedance. ²No standard established by 35 IAC Part 620.410. ³For pH, upper and lower tolerance limits are shown. ⁴No reportable result because chemical preservation did not meet method requirements. ⁵No sampling at the well from September to end of the year due to pump failure.

Fill Event	Sample Date	рН	EC mS/m					SO ₄ ²⁻	Total P mg/L		Hardness	FC CFU/100 mL	Temp. °C	Elevation ft CCD
Class I Standa Upper TL ³	ard^1	6.5–9.0 5.7–8.1	NS² 182	1,200 1,214	NS 4.3	NS 31	200 383	400 207	NS 0.68	NS 2.2	NS 791	NS <1	NS 17.3	NS -69
1	01/07/01	6.0	116	006	5.0	20	107	1.40	0.00	1.0	(2)	1	10.1	00
	01/07/21	6.9	116		< 5.0	29	187	149	0.23	1.8	626	<1	13.1	-82
1DUP	01/07/21	6.9	116	884	< 5.0	32	191	153	0.21	1.8	617	<1	13.1	-82
2/3	01/20/21	6.8	112 128	944	<5.0 <5.0	21 30	188 180	162	0.21	1.9 1.8	639 620	<1	13.5	-82 -87
4 5	01/28/21 02/10/21	6.9 6.9	128	902 852	< <u>5.0</u>	<20	208	157 180	<0.15 0.27	1.8 1.9	629 634	<1 <1	13.6 13.6	-87
5 6.1	02/10/21	6.9 6.8	110	832 918	5.9 <5.0	<20 <20	208 184	155	0.18	1.9	634 631	<1 <1	13.5	-82 -83
6.2	02/23/21 03/09/21	0.8 6.8	114	918 894	<5.0 <5.0	<20 27	184	155	0.18	1.8 1.8	626	<1 <1	13.3	-85 -81
6.2DUP	03/09/21	0.8 6.8	117	882	<5.0	34	195	152	0.34	2.0	647	<1	13.7	-81 -81
0.2D0F 7	03/09/21	0.8 6.9	117	810		16	195	155	0.19	2.0 1.9	612	<1	13.7	-81
8	03/18/21	6.8	112	910	<5.0	28	182	162	0.19	1.9	597	<1	13.0	-83
9	04/08/21	6.9	108	844	<5.0	<20	183	162	<0.15	1.8	632	<1	13.9	-82
10	04/29/21	7.0	116	980	<5.0	23	181	149	<0.15	1.9	645	<1	13.8	-86
11/12/13	05/11/21	6.8	121	1,008	<5.0	23	170	138	0.23	1.9	617	<1	13.6	-85
11/12/13 11/12/13DUP	05/11/21	6.8	121	1,000	<5.0	29	174	141	0.20	1.8	627	<1	13.6	-85
14	05/25/21	6.9	121	934	<5.0	25	175	150	0.18	1.0	651	<1	14.6	-83
15.1	06/22/21	6.9	108	924	<5.0	<20	179	142	0.28	1.8	621	<1	14.8	-84
15.2	07/12/21	6.9	104	968	<5.0	<20	186	150	0.29	1.8	628	<1	14.1	-82
16	07/21/21	6.8	104	958	< 5.0	24	176	145	< 0.15	1.6	604	<1	13.9	-81
17	07/27/21	6.8	114	922	< 5.0	21	176	153	< 0.15	1.8	626	<1	14.9	-82
17DUP	07/27/21	6.8	114	932	< 5.0	22	179	155	< 0.15	1.8	624	<1	14.9	-82
18/19/20	08/04/21	5.9	111	998	< 5.0	<20	171	150	0.23	1.7	604	<1	14.5	-85
22/23	08/31/21	6.9	111	872	< 5.0	<20	175	151	0.20	1.6	641	<1	14.8	-84
24	09/24/21	6.8	117	970	< 5.0	20	173	149	NRR ⁵	1.7	973	<1	14.8	-84
25	10/06/214	7.0	95	1,024	<5.0	20	172	153	0.17	1.7	632	<1	14.5	-84

TABLE 2: ANALYSIS OF GROUNDWATER SAMPLED FROM MONITORING WELL G-02 AT THE MCCOOK RESERVOIR SITE DURING HIGH-STAGE OPERATION IN 2021

¹Illinois Administrative Code (IAC) Title 35 Part 620.410 Class I Standards. Bold text indicates exceedance.

²No standard established by 35 IAC Part 620.410.
 ³For pH, upper and lower tolerance limits are shown.
 ⁴No sampling at the well from the rest of October to end of the year due to pump failure.
 ⁵No reportable result due to possible sample contamination.

Fill Event	Sample Date	pН	EC mS/m	TDS	TOC	COD	Cl-	SO4 ²⁻ mg/L-			Hardness	FC CFU/100 mL	Temp. °C	Elevation ft CCD
Class I Sta Upper TL ³		6.5–9.0 5.7–8.4	NS² 312	1,200 1,826	NS 19.3	NS 93	200 618	400 167	NS 0.24	NS 32.0	NS 570	NS <1	NS 18.3	NS -95
1 2/3 2/3DUP 4 5 6.1 6.2 7 7DUP 8 9 10 11/12/13 14 14DUP 15.1 15.2 16	01/07/21 01/20/21 01/20/21 01/28/21 02/17/21 02/23/21 03/09/21 03/18/21 03/18/21 04/08/21 04/08/21 04/29/21 05/11/21 05/25/21 05/25/21 05/25/21 06/22/21 07/12/21	$7.0 \\ 6.8 \\ 6.8 \\ 7.0 \\ 6.9 \\ 6.9 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 6.9 \end{bmatrix}$	$179 \\ 179 \\ 179 \\ 173 \\ 172 \\ 174 \\ 170 \\ 171 \\ 171 \\ 147 \\ 146 \\ 150 \\ 166 \\ 162 \\ 162 \\ 162 \\ 140 \\ 149 \\ 161 $	1,240 1,382 1,382 1,176 1,266 1,302 1,194 1,176 1,184 1,128 1,142 1,262 1,494 1,202 1,254 1,220 1,360 1,320	$15.6 \\ 17.7 \\ 18.3 \\ 13.7 \\ 17.1 \\ 17.1 \\ 15.0 \\ 15.3 \\ 13.7 \\ 14.3 \\ 15.0 \\ 15.8 \\ 16.0 \\ 13.6 \\ 13.3 \\ 15.1 \\ 15.3 \\ 14.1 \\ 15.3 \\ 14.1 \\ 15.3 \\ 14.1 \\ 15.3 \\ 14.1 \\ 15.4 \\ 15.6 \\ 13.3 \\ 14.1 \\ 15.7 \\ 14.1 \\ 15.8 \\ 14.1 \\ 15.3 \\ 14.1 \\ 15.8 \\ 14.1 \\ 14.1 \\ 15.8 \\ 15.1 \\ 15.1 \\ 14.1 \\ $	69 64 66 60 62 65 60 59 64 52 59 65 62 58 63 42 60 62	400 435 374 412 425 401 384 383 393 384 405 365 365 358 409 379	141 148 148 127 142 143 139 133 133 134 137 130 136 128 128 127 141 137	$\begin{array}{c} < 0.15 \\ < 0.15 \\ < 0.15 \\ 0.20 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 $	24.0 25.2 25.2 23.1 24.1 24.7 23.6 23.6 23.8 22.2 23.0 24.2 25.6 22.8 23.0 19.5 23.9 22.8	489 545 542 479 506 518 480 473 482 453 487 510 502 514 506 493 523 516	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	13.9 13.6 13.6 13.7 14.1 14.0 13.9 14.0 14.0 14.0 14.3 14.2 14.2 13.9 14.3 14.3 14.3 14.3 14.2 14.2	-112 -112 -112 -112 -112 -110 -110 -110
16DUP 17 18/19/20 22/23 24 25 26 27	07/21/21 07/27/21 08/04/21 08/31/21 09/24/21 10/06/21 10/14/21 10/27/21	6.9 7.0 5.9 7.0 6.8 7.0 7.0 7.0	161 163 154 144 179 148 136 180	1,318 1,232 1,392 1,112 1,292 1,328 1,276 1,348	13.4 11.7 13.6 12.4 13.8 14.8 15.0 16.5	64 56 56 51 60 64 61 63	378 381 385 362 386 397 398 431	137 143 133 133 136 137 138 143	<0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15	22.8 23.6 25.0 19.4 24.6 24.3 23.4 24.7	513 494 493 497 511 560 502 521	<1 <1 <1 <1 <1 <1 <1 <1 <1	14.2 14.5 14.3 14.7 14.3 14.7 14.3 14.1 13.8 13.7	-109 -110 -110 -110 -110 -110 -109 -98

TABLE 3: ANALYSIS OF GROUNDWATER SAMPLED FROM MONITORING WELL G-03 AT THE MCCOOK RESERVOIR SITE DURING HIGH-STAGE OPERATION IN 2021

TABLE 3 (Continued): ANALYSIS OF GROUNDWATER SAMPLED FROM MONITORING WELL G-03 AT THE MCCOOK RESERVOIR
SITE DURING HIGH-STAGE OPERATION IN 2021

Fill Event	Sample Date	рН	EC mS/m	TDS		COD		SO4 ²⁻ mg/L-			Hardness	FC CFU/100 mL	Temp. °C	Elevation ft CCD
Class I St		6.5–9.0	NS	1,200	NS	NS	200	400	NS	NS	NS	NS	NS	NS
Upper TL		5.7–8.4	312	1,826	19.3	93	618	167	0.24	32.0	570	<1	18.3	-95
27DUP	10/27/21	7.0	180	1,378	16.7	65	411	141	<0.15	24.7	518	<1	13.7	-98
28	11/30/21	7.0	182	1,294	15.5	56	404	139	<0.15	22.4	522	<1	13.9	-112
29	12/14/21	7.0	194	1,322	17.0	54	409	142	<0.15	25.2	579	<1	14	-111
29DUP	12/14/21	7.0	194	1,326	17.1	54	410	143	<0.15	25.2	580	<1	14	-111

¹Illinois Administrative Code (IAC) Title 35 Part 620.410 Class I Standards. Bold text indicates exceedance.
 ²No standard established by 35 IAC Part 620.410.
 ³For pH, upper and lower tolerance limits are shown.

Fill Event	Sample Date	pН	EC mS/m	TDS mg/L	TOC	COD	Cl-	SO4 ²⁻ -m			Hardness	FC CFU/100 mL	Temp. °C	Elevation ft CCD
Class I Standa Upper TL ³	ard ¹	6.5–9.0 6.3–9.2	NS ² 179	1,200 1,100	NS 8.1	NS 30	200 213	400 584	NS 0.11	NS 19.0	NS 746	NS <1	NS 17.0	NS -34
1 2/3 4 4DUP 5 6.1 6.2 7 8 9 10 11/12/13 14 15.1 15.1DUP 15.2 16 17 18/19/20	01/06/21 01/21/21 01/27/21 02/09/21 02/24/21 03/11/21 03/19/21 04/06/21 04/06/21 04/16/21 04/27/21 05/10/21 05/21/21 05/23/21 06/23/21 07/13/21 07/28/21 08/03/21	 6.8 6.9 6.9 6.9 6.8 7.0 6.7 6.9 6.9 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.4 5.9 	118 134 110 110 138 139 131 134 134 134 136 104 109 147 122 122 123 126 119 122	1,276 1,266 1,144 1,140 966 1,148 1,178 1,130 1,122 1,162 1,118 1,224 1,224 1,224 1,224 1,224 1,126 1,174 1,092 1,238 1,156 1,188	5.5 NRR^4 5.3 5.2 5.8 5.5 6.1 5.9 5.4 5.3 5.2 5.2 $< 5.0 \text{ 5.2}$ 5.4 < 5.0 $< 5.0 \text{ < 5.0}$	$\begin{array}{c} 24\\ 22\\ 23\\ 24\\ <20\\ 21\\ 26\\ 21\\ <20\\ 22\\ 20\\ <20\\ <20\\ <20\\ <20\\ <20\\ $	150 152 153 153 177 150 154 151 152 160 150 144 151 138 138 150 157 164 152	 335 339 345 343 328 332 339 337 340 328 312 322 298 299 320 325 330 308 	$\begin{array}{c} < 0.15 \\ < 0.15 \\ 0.18 \\ < 0.15 \\ 0.19 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ $	9.6 10.1 10.2 10.1 10.0 10.2 10.8 10.2 10.3 10.5 10.2 10.2 10.2 10.0 10.1 10.2 10.1 10.0 9.9	657 737 772 767 728 712 696 711 693 726 740 698 753 685 690 684 707 714 694	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	$\begin{array}{c} 14.5\\ 14.7\\ 14.3\\ 14.3\\ 14.3\\ 14.3\\ 14.5\\ 14.6\\ 15.4\\ 14.6\\ 15.3\\ 14.8\\ 15.2\\ 15.0\\ 15.0\\ 15.0\\ 15.8\\ 15.5\\ 16.0\\ 15.4\\ 15.4\\ 15.4\\ 15.4\\ 15.5\\ 16.0\\ 15.4\\ 15.4\\ 15.4\\ 15.5\\ 16.0\\ 15.4\\ 15.4\\ 15.5\\ 16.0\\ 15.5\\ 16.0\\ 15.4\\ 15.5\\ 16.0\\ 15.4\\ 15.5\\ 16.0\\ 15.5\\$	-35 -33 -35 -35 -35 -34 -36 -34 -34 -34 -32 -33 -32 -34 -34 -30 -32 -34 -32
18/19/20DUP 22/23 24 24DUP 25 26 27	08/03/21 08/27/21 09/23/21 09/23/21 10/08/21 10/14/21 10/27/21	5.9 6.8 6.7 6.7 6.9 6.9 6.7	122 109 138 138 133 103 144	1,226 1,066 1,192 1,206 1,116 1,088 1,196	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<20 <20 <20 <20 <20 <20 23 24	154 155 158 159 151 152 163	 312 318 313 315 314 313 321 	$\begin{array}{c} < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ < 0.15 \\ 0.16 \end{array}$	10.2 9.8 10.3 10.0 9.3 9.4 10.2	687 716 704 673 658 689 712	<1 <1 <1 <1 <1 <1 <1	15.4 15.6 14.8 14.8 15.3 14.8 14.7	-32 -31 -32 -32 -32 -32 -32 -25

TABLE 4: ANALYSIS OF GROUNDWATER SAMPLED FROM MONITORING WELL G-04 AT THE MCCOOK RESERVOIR SITE DURING HIGH-STAGE OPERATION IN 2021

TABLE 4 (Continued): ANALYSIS OF GROUNDWATER SAMPLED FROM MONITORING WELL G-04 AT THE MCCOOK RESERVOIR SITE DURING HIGH-STAGE OPERATION IN 2021

Fill Event	Sample Date	рН	EC mS/m	TDS mg/L							Hardness	FC CFU/100 mL	Temp. °C	Elevation ft CCD
Class I Standard ¹		6.5–9.0	NS	1,200	NS	NS	200	400	NS	NS	NS	NS	NS	NS
Upper TL ³		6.3–9.2	179	1,100	8.1	30	213	584	0.11	19.0	746	<1	17.0	-34
28	11/30/21	6.9	138	1,062	<5.0	29	156	315	<0.15	9.6	721	<1	14.4	-33
29	12/14/21	6.9	143	1,122	5.0	24	157	309	<0.15	9.9	759	<1	14.3	-35

¹Illinois Administrative Code (IAC) Title 35 Part 620.410 Class I Standards. Bold text indicates exceedance. ²No standard established by 35 IAC Part 620.410. ³For pH, upper and lower tolerance limits are shown. ⁴No reportable result because chemical preservation did not meet method requirements.

Fill Event	Sample Date	pН	EC mS/m	TDS	TOC	COD	Cl-	SO4 ²⁻ mg/L-		-	Hardness	FC CFU/100 mL	Temp. °C	Elevation ft CCD
Class I Sta Upper TL ³	ndard ¹	6.5–9.0 6.3–9.4	NS ² 219	1,200 1,200	NS 29.8	NS 102	200 159	400 499	NS 0.32	NS 6.6	NS 738	NS <1	NS 15.3	NS -38
opper TL		0.5 7.4	217	1,200	27.0	102	157	777	0.52	0.0	750	~1	15.5	-50
1	01/06/21	6.8	124	1,284	<5.0	23	141	421	0.16	6.1	767	<1	13.9	-37
2/3	01/21/21	6.8	133	1,226	NRR ⁴	<20	147	419	0.32	6.4	798	<1	13.8	-36
4	01/28/21	6.9	143	1,178	<5.0	22	144	421	0.22	6.3	835	<1	13.7	-38
5	02/09/21	6.7	140	1,250	<5.0	<20	173	445	0.21	6.1	798	<1	14.0	-36
5DUP	02/09/21	6.7	140	1,224	<5.0	<20	172	455	0.17	6.0	807	<1	14.0	-36
6.1	02/24/21	6.8	141	1,216	<5.0	<20	148	423	0.16	6.0	807	<1	15.2	-34
6.2	03/11/21	6.9	131	1,292	<5.0	<20	154	449	< 0.15	6.3	781	<1	14.7	-37
7	03/19/21	6.6	136	1,202	<5.0	19	150	436	< 0.15	6.2	798	<1	14.3	-37
8	04/06/21	6.9	137	1,224	<5.0	<20	154	437	< 0.15	6.1	812	<1	14.5	-35
9	04/16/21	6.8	139	1,236	<5.0	<20	154	436	< 0.15	6.0	835	<1	15.3	-42
9DUP	04/16/21	6.8	139	1,238	<5.0	<20	154	438	< 0.15	6.0	815	<1	15.3	-42
10	04/27/21	6.9	109	1,222	<5.0	<20	148	422	< 0.15	6.4	840	<1	14.5	-35
11/12/13	05/10/21	6.8	133	1,334	<5.0	<20	140	404	< 0.15	6.0	778	<1	14.4	-36
14	05/21/21	6.8	151	1,314	<5.0	<20	147	422	0.20	6.2	849	<1	15.8	-36
15.1	06/23/21	6.8	130	1,274	<5.0	<20	134	399	< 0.15	6.2	800	<1	15.3	-35
15.2	07/13/21	6.8	122	1,232	<5.0	<20	149	437	< 0.15	6.4	804	<1	14.4	-32
15.2DUP	07/13/21	6.8	122	1,204	<5.0	<20	143	408	0.17	6.4	804	<1	14.4	-32
16	07/22/21	6.8	124	1,278	<5.0	<20	148	422	< 0.15	6.2	807	<1	14.7	-37
17	07/28/21	6.3	116	1,258	<5.0	<20	152	435	< 0.15	6.1	809	<1	14.7	-36
18/19/20	08/03/21	5.8	119	1,378	<5.0	<20	143	407	< 0.15	6.1	782	<1	14.2	-35
22/23	08/27/21	6.5	110	1,168	<5.0	<20	148	424	< 0.15	5.7	813	<1	14.6	-35
22/23DUP	08/27/21	6.5	110	1,200	<5.0	<20	142	407	< 0.15	5.8	830	<1	14.6	-35
24	09/23/21	6.7	135	1,224	<5.0	<20	145	410	< 0.15	5.7	752	<1	14.2	-32
25 25DUP	10/08/21 10/08/21	6.8 6.8	145 145	1,234 1,234	<5.0 <5.0	21 <20	145 145	408 407	<0.15 <0.15	5.8 5.8	750 744	<1 <1	14.2 14.2	-33 -33

TABLE 5: ANALYSIS OF GROUNDWATER SAMPLED FROM MONITORING WELL G-05 AT THE MCCOOK RESERVOIR SITE DURING HIGH-STAGE OPERATION IN 2021

Fill Event	Sample Date	pН	EC mS/m	TDS	TOC	COD	Cl ⁻	SO4 ²⁻ mg/L-	Total P	NH3-N	Hardness	FC CFU/100 mL	Temp. °C	Elevation ft CCD
Class I Star Upper TL ³	ndard ¹	6.5–9.0 6.3–9.4	NS 219	1,200 1,200	NS 29.8	NS 102	200 159	400 499	NS 0.32	NS 6.6	NS 738	NS <1	NS 15.3	NS -38
26	10/14/21	6.9	97	1,204	<5.0	<20	146	414	< 0.15	5.7	784	<1	14.1	-34
27	10/27/21	6.7	122	1,288	< 5.0	21	149	419	< 0.15	5.9	788	<1	14.1	-31
28	11/30/21	6.9	139	1,234	<5.0	<20	152	425	< 0.15	5.8	821	<1	14.1	-35
28DUP	11/30/21	6.9	139	1,150	<5.0	<20	152	427	< 0.15	5.8	833	<1	14.1	-35
29	12/14/21	6.9	143	1,232	<5.0	<20	148	408	< 0.15	5.7	862	<1	14.2	-36

TABLE 5 (Continued): ANALYSIS OF GROUNDWATER SAMPLED FROM MONITORING WELL G-05 AT THE MCCOOK RESERVOIR SITE DURING HIGH-STAGE OPERATION IN 2021

¹Illinois Administrative Code (IAC) Title 35 Part 620.410 Class I Standards. Bold text indicates exceedance. ²No standard established by 35 IAC Part 620.410. ³For pH, upper and lower tolerance limits are shown. ⁴No reportable result because chemical preservation did not meet method requirements.

Groundwater pH was below the Class I standard in one sample each from wells G-02 and G-03, and two samples each from wells G-04 and G-05. However, pH was below the lower TL in only one sample each from wells G-04 and G-05. Total dissolved solids (TDS) exceeded the Class I standard in all samples from well G-01, 18 samples from well G-03, seven samples from well G-04, and 23 samples from well G-05. The TDS in those samples from wells G-04 and G-05 also exceeded the upper TLs. Chloride concentrations exceeded Class I standards in all samples from wells G-01 and G-03, and in one sample from well G-02. However, it did not exceed the upper TLs for these wells. Sulfate exceeded the Class I standard in 23 samples from well G-05, but never exceeded the upper TL for this well.

There were a few exceedances of upper TLs for parameters that do not have established limits under Class I standards. Total organic carbon (TOC) exceeded the upper TL in one sample each from wells G-01 and G-02. The TOC was undetected in 13 samples from well G-01 and 19 samples from well G-02, but the laboratory reporting limit for these samples was higher than the upper TLs at these wells. Chemical oxygen demand (COD) exceeded the upper TL in one sample from well G-01 and two samples from well G-02. Total phosphorus (P) exceeded the upper TL in all samples from well G-01 and four samples from well G-04. Total P was undetected in all remaining samples from well G-04, but the laboratory reporting limit was greater than the upper TL at this well. Ammonia exceeded the upper TL in all samples from well G-01. Hardness exceeded the upper TL in one sample each from wells G-02 and G-03, three samples from well G-04 and 23 events in well G-05. Fecal coliform bacteria were not detected in any high-stage samples, for one sample from well G-01 the laboratory reporting limit was higher than the upper TL.

Low-Stage Semiannual Monitoring. All results for Field and Routine parameters for lowstage semiannual sampling and TLs for these parameters are reported in <u>Table 6</u>. The results for Inorganic and Radioactive parameters are reported in <u>Table 7</u>, and all associated upper TLs for parameters in <u>Table 7</u> are listed in <u>Table 8</u>. The results for Organic parameters are reported in <u>Table 9</u>, and all associated upper TLs for parameters in <u>Table 9</u> are listed in <u>Table 10</u>. Analytical results that exceed the Class I standards are shown in bold text in <u>Tables 6</u>, <u>7</u> and <u>9</u>. Analytical results were compared to upper TLs based on the background monitoring data.

There were a few exceedances of Class I standards and upper TLs by Routine and Field parameters (<u>Table 6</u>). Groundwater pH was below the Class I standard in the first semiannual sample from well G-07, but it was not lower than the lower TL for this well. The TDS exceeded the Class I standard in the first semiannual sample from wells G-01 and G-05, in the second semiannual sample from well G-04, and in both semiannual samples from well G-03, but it exceeded the upper TLs only for samples from wells G-04 and G-05. The chloride concentration exceeded the Class I standard in the first semiannual sample from well G-01 and in both semiannual samples from wells G-01 and G-05, but it exceeded the Class I standard in the first semiannual sample from well G-01 and in both semiannual samples from wells G-03 and G-07, but it never exceeded the upper TLs for these wells. Sulfate concentrations exceeded the Class I standard in both semiannual samples from well G-05, but it never exceeded the upper TL for this well.

There were a few exceedances of upper TLs among parameters without established Class I standards. The COD exceeded the upper TL in the first semiannual sample from well G-04.

Well	Sampling Event	Sample Date	рН	EC mS/m			COD	Cl-				Hardness	FC CFU/100 mL	Temp. °C	Elevation ft CCD
Class]	l Standard	1	6.5-9.0	NS ²	1,200	NS	NS	200	400	NS	NS	NS	NS	NS	NS
G-01 ³		Upper TL ⁴		586	3,845	2.7	40	1,280	730	0.13	2.8	1,607	<1	15.7	-106
	1	09/08/21	6.9	168	1,668	<5.0	<20	438	335	0.16	3.6	886	<1	14.2	-117
G-02 ³		Upper TL	5.7-8.1	182	1,214	4.3	31	383	207	0.68	2.2	791	<1	17.3	-69
	1	08/19/21	6.7	119	942	<5.0	<20	180	161	0.27	1.6	601	<1	14.8	-84
G-03		Upper TL	5.7-8.4	312	1,826	19.3	93	618	167	0.24	32.0	570	<1	18.3	-95
	1	09/08/21	7.0	153	1,258	13.7	66	400	133	< 0.150	24.3	506	<1	14.4	-110
	1DUP	09/08/21	7.0	153	1,254	14.3	57	404	135	< 0.150	24.5	507	<1	14.4	-110
	2	11/19/21	7.0	179	1,212	13.9	54	406	138	< 0.150	21.9	509	<1	13.8	-111
G-04		Upper TL	6.3-9.2	179	1,100	8.1	30	213	584	0.11	19.0	746	<1	17.0	-34
	1	08/20/21	7.0	111	1,108	< 5.0	35	155	325	< 0.150	9.7	680	<1	15.3	-31
	2	11/18/21	6.9	140	1,308	< 5.0	30	162	323	< 0.150	9.7	710	<1	14.1	-32
	2DUP	11/18/21	6.9	140	1,088	<5.0	24	163	324	< 0.150	9.6	714	<1	14.1	-32
G-05		Upper TL	6.3–9.4	219	1,200	29.8	102	159	499	0.32	6.6	738	<1	15.3	-38
	1	08/20/21	7.0	109	1,202	< 5.0	<20	146	427	< 0.150	5.9	776	<1	14.5	-34
	2	11/18/21	6.9	138	1,046	<5.0	<20	153	429	< 0.150	5.7	810	<1	14.2	-34
G-06		Upper TL	6.0-7.9	176	1,324	3.8	17	147	392	0.081	3.7	804	<1	16.2	-13
	1	08/20/21	6.9	88	968	< 5.0	<20	125	268	< 0.150	2.8	680	<1	13.1	-18
	2	11/18/21	6.9	115	1,074	<5.0	<20	111	335	< 0.150	2.9	729	<1	12.8	-18

TABLE 6: ANALYSIS OF ROUTINE PARAMETERS IN GROUNDWATER SAMPLED FROM EACH MONITORING WELL AT THE MCCOOK RESERVOIR SITE DURING TWO LOW-STAGE SEMIANNUAL SAMPLINGS IN 2021

TABLE 6 (Continued): ANALYSIS OF ROUTINE PARAMETERS IN GROUNDWATER SAMPLED FROM EACH MONITORING WELL AT THE MCCOOK RESERVOIR SITE DURING TWO LOW-STAGE SEMIANNUAL SAMPLINGS IN 2021

Well	Sampling Event	Sample Date	pН	EC mS/m	TDS	TOC		Cl-				Hardness	FC CFU/100 mL	Temp. °C	Elevation ft CCD
Class	I Standard	l ¹	6.5–9.0	NS	1,200	NS	NS	200	400	NS	NS	NS	NS	NS	NS
G-07	1 2	Upper TL 08/19/21 11/19/21	5.8–7.8 6.2 7.0	536 167 168	2,856 1,054 1,094		62 30 28	558 262 247		4.3 0.89 0.83	192 ⁵ 100 89	1,430 499 479	<1 <1 <1	20.3 13.7 13.5	-3 -2 -8

¹Illinois Administrative Code Title (IAC) 35 Part 620.410 Class I Standards. Bold text indicates exceedance.

²No standard established by 35 IAC Part 620.410. ³No sampling at the well for the second semiannual sampling event due to pump failure.

⁴For pH, upper and lower tolerance limits are shown.

⁵McCook Reservoir site was previously unpaved biosolids lagoons. Elevated NH₃-N may reflect infiltration or drilling through old biosolids lagoon sediments.

Parameter	Units	Class I Standard ¹	G-01	G-02	G-03	G-03DUP ²	G-04	G-05	G-06	G-07
Ag	mg/L	0.05	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
As	"	0.01	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.003
В	"	2.0	0.508	0.352	0.791	0.774	1.87	1.88	4.38	0.219
Ba	"	2.0	0.049	0.053	0.083	0.081	0.033	0.045	0.020	0.036
Be	"	0.004	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Cd	"	0.005	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Co	"	1.0	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Cr	"	0.1	0.004	0.056	0.005	0.006	< 0.004	< 0.004	< 0.004	< 0.004
Cu	"	0.65	< 0.002	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
CN	"	0.2	< 0.005	< 0.005	0.005	0.005	< 0.005	< 0.005	< 0.005	< 0.005
F	"	4.0	0.363	0.292	0.443	0.445	0.420	0.370	0.349	0.263
Fe	"	5.0	0.267	2.094	0.283	0.275	0.791	0.453	0.336	0.864
Hg	"	0.002	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Mn	"	0.15	0.024	0.031	0.012	0.011	0.011	0.026	0.007	0.006
Ni	"	0.1	0.006	0.024	0.017	0.016	< 0.002	< 0.002	< 0.002	0.004
NO ₃ ⁻ -N	"	10	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Pb	"	0.0075	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Sb	"	0.006	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Se	"	0.05	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Tl	"	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Zn	"	5.0	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.022
Ra-226	pCi/L	20	1.54	1.50	1.82	1.82	1.60	1.60	1.60	1.20
Ra-228	• "	20	1.92	1.40	2.58	2.82	2.10	2.00	1.40	1.30

TABLE 7: ANALYSIS OF INORGANIC AND RADIOACTIVE PARAMETERS IN GROUNDWATER SAMPLED FROM EACH MONITORING WELL AT THE MCCOOK RESERVOIR SITE DURING THE FIRST LOW-STAGE SEMIANNUAL SAMPLING IN AUGUST AND SEPTEMBER 2021

¹Illinois Administrative Code Title 35 Part 620.410 Class I Standards. Bold text indicates exceedance.

²Duplicate sample.

Parameter	Units	G-01	G-02	G-03	G-04	G-05	G-06	G-07
Ag	mg/L	0.025	0.025	0.025	0.025	0.025	0.025	0.025
As	"	0.0018	0.025	0.0028	0.0035	0.0027	0.025	0.0086
В	"	0.598	0.51	1.09	2.5	2.5	7.1	0.59
Ba	"	0.048	0.092	0.15	0.095	0.053	0.058	0.09
Be	"	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015
Cd	"	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
Co	"	0.035	0.0081	0.0032	0.035	0.035	0.035	0.0048
Cr	"	0.025	0.633	0.13	0.035	0.035	0.035	0.035
Cu	"	0.0044	0.015	0.0095	0.0031	0.0025	0.0062	0.0074
CN	"	0.1	0.1	0.1	0.1	0.1	0.1	0.1
F	"	0.05	0.05	0.33	0.4	0.35	0.37	0.05
Fe	"	4.92	10.5	4.48	1.37	0.95	1.43	2.44
Hg	"	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Mn	"	0.099	0.103	0.21	0.036	0.026	0.021	0.012
Ni	"	0.011	0.25	0.065	0.0092	0.0062	0.05	0.01
NO ₃ ⁻ -N	"	1.08	0.075	0.075	0.075	0.075	0.075	0.075
Pb	"	0.00375	0.00375	0.0056	0.0077	0.00375	0.00375	0.00375
Sb	"	0.003	0.003	0.003	0.003	0.003	0.003	0.003
Se	"	0.025	0.025	0.025	0.025	0.025	0.025	0.025
T1	"	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Zn	"	0.01	0.01	0.01	0.057	0.1	0.069	0.01
Ra-226	pCi/L	2.78	2.33	2.58	1.89	1.6	2.24	3.75
Ra-228	"	3.19	1.51	4.12	3.08	1.65	1.89	4.64

TABLE 8: UPPER TOLERANCE LIMITS FOR INORGANIC AND RADIOACTIVE PARAMETERS IN EACH MONITORING WELL AT THE MCCOOK RESERVOIR SITE ESTABLISHED BY BACKGROUND MONITORING PRIOR TO OPERATION IN JANUARY 2018

Parameter	Unit	Class I Standard ¹	Max RL ²	G-01	G-02	G-03	G-03DUP ³	G-04	G-05	G-06	G-07
Herbicides											
2,4-D	mg/L	0.07	0.00689	< 0.00643	< 0.0065	< 0.00637	< 0.00622	< 0.00644	< 0.00689	< 0.00671	< 0.00649
Silvex (2,4,5-TP)	"	0.05	0.00344	< 0.00322	< 0.00325	< 0.00319	< 0.00311	< 0.00322	< 0.00344	< 0.00335	< 0.00325
Atrazine	"	0.003	0.00113	< 0.00106	< 0.00107	< 0.00107	< 0.00107	< 0.00109	< 0.00107	< 0.00113	< 0.00108
Dalapon	"	0.2	0.00199	< 0.00182	< 0.00199	< 0.00181	< 0.00184	< 0.00187	< 0.00197	< 0.00195	< 0.00196
Simazine	"	0.004	0.00113	< 0.00106	< 0.00107	< 0.00107	< 0.00107	< 0.00109	< 0.00107	< 0.00113	< 0.00108
PCBs, total	"	0.0005	0.0103	< 0.0005	< 0.0005	< 0.0005	< 0.0103	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Pesticides											
Alachlor	"	0.002	0.00113	< 0.00106	< 0.00107	< 0.00107	< 0.00107	< 0.00109	< 0.00107	< 0.00113	< 0.00108
Aldicarb	"	0.003	0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Carbofuran	"	0.04	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chlordane (technical)	"	0.002	0.00113	< 0.00106	< 0.00107	< 0.00107	< 0.00107	< 0.00109	< 0.00107	< 0.00113	< 0.00108
Endrin	"	0.002	0.0000453	< 0.0000424	< 0.0000427	<0.0000428	< < 0.0000429	0<0.0000435	5 < 0.0000429	< 0.0000453	3 < 0.0000431
gamma-BHC (Lindane)	"	0.0002	0.0000453	< 0.0000424	< 0.0000427	<0.0000428	< < 0.0000429	0<0.0000435	5 < 0.0000429	< 0.0000453	8 < 0.0000431
Heptachlor	"	0.0004	0.0000453	< 0.0000424	< 0.0000427	<0.0000428	< -0.0000429	<0.0000435	5 < 0.0000429	< 0.0000453	8 < 0.0000431
Heptachlor epoxide	"	0.0002	0.0000453	< 0.0000424	< 0.0000427	<0.0000428	< -0.0000429	<0.0000435	5 < 0.0000429	< 0.0000453	8 < 0.0000431
Methoxychlor	"	0.04	0.0000906	< 0.0000849	0<0.0000854	< 0.0000856	0.0000858	3<0.000087	< 0.0000858	< 0.0000906	6 < 0.0000863
Toxaphene	"	0.003	0.00227	< 0.00212	< 0.00213	< 0.00214	< 0.00215	< 0.00217	< 0.00214	< 0.00227	< 0.00216
Volatile Organic Compounds	S										
1,1,1-Trichloroethane	"	0.2	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
1,1,2-Trichloroethane	"	0.005	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
1,1-Dichloroethene	"	0.007	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
1,2-Dichloroethane	"	0.005	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
1,2-Dichloropropane	"	0.005	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
1,2-Dibromo-3-Chloropropane	e "	0.0002	0.000143	< 0.000143	< 0.000139	< 0.000139	< 0.000135	< 0.000132	< 0.000139	< 0.000132	< 0.000135
Ethylene dibromide	"	0.00005	0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Benzene	"	0.005	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.00077	< 0.0005
Carbon tetrachloride	"	0.005	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005

TABLE 9: ANALYSIS OF ORGANIC PARAMETERS IN GROUNDWATER SAMPLED FROM EACH MONITORING WELL AT THE MCCOOK RESERVOIR SITE DURING THE FIRST LOW-STAGE SEMIANNUAL SAMPLING IN AUGUST AND SEPTEMBER 2021

Parameter	Unit	Class I Standard ¹	Max RL ²	G-01	G-02	G-03	G-03DUP ³	G-04	G-05	G-06	G-07
Chlorobenzene	mg/L	0.1	0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	<0.0005	< 0.0005	< 0.0005
cis-1,2-Dichloroethene	"	0.07	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.00183	0.00214
Ethylbenzene	"	0.7	0.00050	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Methylene chloride	"	0.005	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Methyl tert-butyl ether	"	0.07	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Styrene	"	0.1	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Tetrachloroethene	"	0.005	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Toluene	"	1	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
rans-1,2-Dichloroethene	"	0.1	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Trichloroethene	"	0.005	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Vinyl chloride	"	0.002	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.0036	0.053	< 0.001
Xylenes, total	"	10	0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015
Semivolatile Organic Comp	ounds										
1,2,4-Trichlorobenzene	"	0.07	0.0023	< 0.00213	< 0.00214	< 0.0021	< 0.0021	< 0.00214	< 0.00215	< 0.00217	< 0.00225
,2-Dichlorobenzene	"	0.6	0.0023	< 0.00213	< 0.00214	< 0.0021	< 0.0021	< 0.00214	< 0.00215	< 0.00217	< 0.00225
,4-Dichlorobenzene	"	0.075	0.0023	< 0.00213	< 0.00214	< 0.0021	< 0.0021	< 0.00214	< 0.00215	< 0.00217	< 0.00225
Benzo[<i>a</i>]pyrene	"	0.0002	0.00225	< 0.00213	< 0.00214	< 0.00210	< 0.00210	< 0.00214	< 0.00215	< 0.00217	< 0.00225
Bis(2-ethylhexyl)phthalate	"	0.006	0.0225	< 0.0213	< 0.0214	< 0.021	< 0.021	< 0.0214	< 0.0215	< 0.0217	< 0.0225
Hexachlorocyclopentadiene	"	0.05	0.0168	< 0.016	< 0.0161	< 0.0158	< 0.0158	< 0.016	< 0.0161	< 0.0163	< 0.0168
Pentachlorophenol	"	0.001	0.00344	< 0.00322	< 0.00325	< 0.00319	< 0.00311	< 0.00322	< 0.00344	< 0.00335	< 0.00325
Phenolics, total recoverable	"	0.1	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

TABLE 9 (Continued): ANALYSIS OF ORGANIC PARAMETERS IN GROUNDWATER SAMPLED FROM EACH MONITORING WELL AT THE MCCOOK RESERVOIR SITE DURING THE FIRST LOW-STAGE SEMIANNUAL SAMPLING IN AUGUST AND SEPTEMBER 2021

¹Illinois Administrative Code Title 35 Part 620.410 Class I Standards. Bold text indicates exceedance. ²Maximum laboratory reporting limit for analyses of an analyte at all monitoring wells.

³Duplicate sample.

Parameter	Units	G-01	G-02	G-03	G-04	G-05	G-06	G-07
Herbicides								
2,4-D	mg/L	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Silvex (2,4,5-TP)	"	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Atrazine	"	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025
Dalapon	"	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
Simazine	"	0.001	0.001	0.001	0.001	0.001	0.001	0.001
PCBs, total	"	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005
Pesticides								
Alachlor	"	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025
Aldicarb	"	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015
Carbofuran	"	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015
Chlordane (technical)	"	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005
Endrin	"	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005
gamma-BHC (Lindane)	"	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005
Heptachlor	"	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025
Heptachlor epoxide	"	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
Methoxychlor	"	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Toxaphene	"	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Volatile Organic Compound	s							
1,1,1-Trichloroethane	"	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
1,1,2-Trichloroethane	"	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
1,1-Dichloroethene	"	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025

TABLE 10: UPPER TOLERANCE LIMITS FOR ORGANIC PARAMETERS IN EACH MONITORING WELL AT THE MCCOOK RESERVOIR SITE ESTABLISHED BY BACKGROUND MONITORING PRIOR TO OPERATION IN JANUARY 2018

Parameter	Units	G-01	G-02	G-03	G-04	G-05	G-06	G-07
1,2-Dichloroethane	"	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
1,2-Dichloropropane	"	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
1,2-Dibromo-3-Chloropropane	"	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
1,2-Dibromoethane	"	0.000025	0.000025	0.000025	0.000025	0.000025	0.000025	0.000025
Benzene	"	0.0025	0.0025	0.0025	0.0025	0.0025	0.00057	0.0025
Carbon tetrachloride	"	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
Chlorobenzene	"	0.001	0.001	0.001	0.001	0.001	0.001	0.001
cis-1,2-Dichloroethene	"	0.0025	0.0025	0.0025	0.0025	0.0025	0.0130	0.0029
Ethylbenzene	"	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
Methylene chloride	"	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
Methyl tert-butyl ether	"	0.035	0.035	0.035	0.035	0.035	0.035	0.035
Styrene	"	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Tetrachloroethene	"	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
Toluene	"	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
trans-1,2-Dichloroethene	"	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
Trichloroethene	"	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0011
Vinyl chloride	"	0.001	0.001	0.001	0.001	0.0052	0.203	0.001
Xylenes, total	"	0.0025	0.0025	0.0025	0.0025	0.0022	0.0025	0.0025
Semivolatile Organic Compou	nds							
1,2,4-Trichlorobenzene	"	0.000025	0.000025	0.000025	0.000025	0.000025	0.000025	0.000025
1,2-Dichlorobenzene	"	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
1,4-Dichlorobenzene	"	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Benzo[a]pyrene	"	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
Bis(2-ethylhexyl) phthalate	"	0.003	0.003	0.003	0.003	0.003	0.003	0.003

TABLE 10 (Continued): UPPER TOLERANCE LIMITS FOR ORGANIC PARAMETERS IN EACH MONITORING WELL AT THE MCCOOK RESERVOIR SITE ESTABLISHED BY BACKGROUND MONITORING PRIOR TO OPERATION IN JANUARY 2018

TABLE 10 (Continued): UPPER TOLERANCE LIMITS FOR ORGANIC PARAMETERS IN EACH MONITORING WELL AT THE MCCOOK RESERVOIR SITE ESTABLISHED BY BACKGROUND MONITORING PRIOR TO OPERATION IN JANUARY 2018

Parameter	Units	G-01	G-02	G-03	G-04	G-05	G-06	G-07
Hexachlorocyclopentadiene	"	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
Pentachlorophenol	"	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
Phenolics, total	"	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025

The COD was undetected in both samples from well G-06, but the reporting limit was higher than the upper TL for this well. Total P exceeded the upper TL in the first semiannual sample from well G-01. Total P was below the reporting limit in all samples from wells G-04 and G-06, but the reporting limit was higher than the upper TLs for these wells. Ammonia exceeded the upper TL in the first semiannual sample from well G-01. Hardness exceeded the upper TL in both samples from well G-05. Groundwater elevation exceeded the upper TLs during the first semiannual monitoring event at well G-07, and during both semiannual monitoring events at wells G-04 and G-06, but the reporting limit was higher than the upper TLs for these wells. Fecal coliform bacteria were not detected in any sample.

Among the Inorganic parameters that are measured once per year during the first low-stage semiannual sampling event, only boron at well G-06 exceeded the Class I standard (<u>Table 7</u>); however, it did not exceed the upper TL for this well. Arsenic in well G-01, nitrate-nitrogen in wells G-02 to G-07, and beryllium and thallium in all wells was below the reporting limit, but the reporting limit was higher than the upper TLs for these parameters in these wells.

There were a few detections of Organic parameters in groundwater collected during the first low-stage semiannual sampling (<u>Table 9</u>). Vinyl chloride in wells G-05 and G-06 exceeded the Class I standard, but it did not exceed the upper TLs for these wells. Benzo[*a*]pyrene, bis(2-ethylhexyl) phthalate, and pentachlorophenol were below the reporting limits in all wells, but the reporting limits for each parameter were higher than the Class I standard and the upper TLs for all wells. Total polychlorinated biphenyls were below the reporting limit in all wells, but the reporting limit was higher than the Class I standard and upper TL in the well G-03 duplicate.

REFERENCES

- Illinois Administrative Code title 35, § 620.410 Groundwater Quality Standards for Class I: Potable Resource Groundwater (Amended at 36 Ill. Reg. 15206, effective October 5, 2012).
- United States Army Corps of Engineers (USACE). 2014. Chicago Underflow Plan McCook Reservoir Lyons Township, Illinois. Groundwater Monitoring and Analysis Plan. Amended July 2014. Approved by IEPA April 2015.