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NOTES FOR SEMINAR ATTENDEES

* Remote attendees’ audio lines have been muted to minimize background noise.
For attendees in the auditorium, please silence your phones.

* A question and answer session will follow the presentation.

* For remote attendees, Please use the “Chat” feature to ask a question via text to
“Host.” For attendees in the auditorium, please raise your hand and wait for the
microphone to ask a verbal question.

* The presentation slides will be posted on the MWRD website after the seminar.

* This seminar has been approved the ISPE for one PDH and approved by the IEPA
for one TCH. Certificates will only be issued to participants who attend the entire
presentation.
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Assistant Professor of Engineering Sciences
and Applied Mathematics
Northwestern University, Evanston, lllinois

Niall M. Mangan received dual Bachelor of Science
degrees in mathematics and physics, with a minor in
chemistry, from Clarkson University, Potsdam, New
York, and Ph.D. in systems biology from Harvard
University, Cambridge, Massachusetts. Dr. Mangan
worked as a postdoctoral associate in the Photovoltaics
Lab at MIT from 2013-2015 and as an Acting Assistant
Professor at the University of Washington, Seattle, from
2016-2017. She is currently an Assistant Professor of
engineering sciences and applied mathematics at
Northwestern University, where she works at the

interface of mechanistic modeling and data-driven
statistical inference. Her group applies these methods
to biological, chemical, and material problems.
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Relating SARS-CoV-2 RNA measured in Chicago-area Wastewater
Treatment Plants and Cook County COVID-19 Public Health Data
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Application areas & My Team:

Biological Networks Model Identification and genetic circuit design

Image analysis for Covid-19 Dynamics in Wastewater Cataly5|§
C. elegans & Numerics

Northwestern niallmangan.com




Big Picture Wastewater Survelllance Project

Public

Public Health
Priorities & Wastewater Sample Health

Assessment Needs || S2MP'Ing Processing Planning &
Response

Fig. 1: Framework for
design, implementation

* Public alerts

and use of wastewater , : * Mobile Testing
surveillance for public * Quarantine Facilitation
Sample & Data | = Modeling & Data COVID-19 - Targeted Interventions

health planning and
response.

Analysis Case Data

Repositories

«  WW Surveillance in lllinois is being conducted at WWTPs & sewers in Chicago & lllinois
and facilities like Cook County Jail and O’Hare Airport

* Non-intrusive monitoring, viral RNA shedding occurs regardless of symptomology
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Big Picture Wastewater Survelllance Project
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design, implementation

* Public alerts
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surveillance for public Sampie & Dats Modeling & Data COVID-19 « Targeted Interventions

health planning and
response.

Analysis Case Data

Repositories

«  WW Surveillance in lllinois is being conducted at WWTPs & sewers in Chicago &
lllinois, Cook County Jail, O’Hare Airport

* Non-intrusive monitoring, viral RNA shedding occurs regardless of symptomology
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Experimental quantification team
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OXFORD g Research Article - Microbes & Environment

Reduction and discharge of SARS-CoV-2 RNA in
Chicago-area water reclamation plants
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Modeling Team
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®*® Flushed with Insights: The Promising Potential i

of Poop-Based Testing for Public Health

SARS-CoV-2 Measurements in Wastewater

Samples are collected at wastewater treatment plants from across the state and analyzed at our lab in Chicago. Results are posted and updated
weekly. Numbers on the y-axis represent SARS-CoV-2 viral remnants in gene copies/liter. Dates on the x-axis are dates the samples were collected.

Last collected: 3/26/2023
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Download data

Photos by Alex Garcia
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Wastewater iIs complex!

* Tollet, shower, sink, washing machine, etc. water from
residential & commercial properties.

* Includes industrial waste

« Can be impacted by weather events
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D\P\I

Why monitor disease using wastewater? |

« Anonymous, inexpensive, & represents an entire community

« Data can be used by public health departments to make
decisions on where to send resources

 Testing Is less accurate for COVID-19 with at-home testing

« Helps fill in the gaps when clinical data is lacking or missing
(e.qg., influenza)

uljin-idp

* Helps detect pathogens early before cases show up in hospitals
(e.qg., Polio In NY summer 2022)

npa-sio



lllinois Wastewater Survelllance System

lllinois Dept Public Health (IDPH) Chicago Dept Public Health (CDPH)

State-wide, ~77 WWTPs, 2x weekly sampling 8 neighborhoods, Cook County Jail, O'Hare, long term
care facility, 1-2x weekly sampling
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Survelllance Program stats

« Currently 79 active WWTPs (in 46 counties)

« 8.5+ million people across lllinois
— ~70% of total lllinois residents

* Processed >18,000 samples since 2021

« (Goal: Work towards health equity by
reaching as many people as possible.

/ ._E - ES I\\I‘
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Pathogens Tested in Wastewater

» Currently testing for: \ .Ub
* SARS-CoV-2 TN 3
* Influenza A/B — , =
» RSV

* Broad range of options to

scale the program (e.g., antimicrobial resistance genes,
emerging pathogens)

« All testing in our program is at the request of the DPHs/CDC
guidance

Northwestern




WBE Workflow

Sample
Collection

Viral RNA Variant » Modeling,

Quantification Sequencing Analytics,
& Reporting
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Dashboard - https://iwss.uillinois.edu/

@/\% DISCOVERY PARTNERS INSTITUTE

lllinois Wastewater

'IDPH ILLINOIS DEPARTMENT OF PUBLIC HEALTH 5
Surveillance System

lllinois Wastewater
Surveillance System

Wastewater Insights §
for lllinois: Infectious ==

Disease Monitoring '-
for Public Health [l -

Actively monitoring 77
locations in lllinois

The Discovery Partners Institute (DPI) — an
innovation hub part of the University of Illinois System
— and the lllinois Department of Public Health (IDPH)

partnered to create a state public health

Northwestern

Greater Chicago, IL 60076
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Locations About ~ News and Resources

O'Brien Water Reclamation Plant +

Population served: 1,263,000

Metropolitan Water i\ .
Reclamation District . ®
of Greater Chicago

Managed by
Metropolitan Water Reclamation District of Greater Chicago

HICAGO

= Leaflet | © OpenStreetMap

SARS-CoV-2 Measurements in Wastewater
Samples are collected at wastewater treatment plants from across the state and analyzed at our lab in Chicago. Results are posted and updated

weekly. Numbers on the y-axis represent SARS-CoV-2 viral remnants in gene copies/liter. Dates on the x-axis are dates the samples were collected.

Last collected: 3/26/2023
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Interpreting results

Wastewater surveillance data is "noisy,” meaning it is highly variable. People infected with SARS-CoV-2 shed the virus at different levels of intensity
and for different lengths of time. Samples are also taken from sources (i.e. wastewater treatment plants) that are subject to a variety of
environmental impacts. includina weather events and industrial activitv. For this reason we focus on trends in the data rather than specific

Vertical scale: ® linear O log

Frequently Asked Questions


https://iwss.uillinois.edu/

https://covid.cdc.gov/covid-data-tracker/#variant-proportions

Variant Sequencing CDC COVID Data Tracker, Midwest Region
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Dashboard — Data Analysis

What the data DOES tell us: 'f*‘f o
« The concentration of viral RNA in a sample = : ;

« How trends change over time
(increasing/decreasing/no change)

What the data DOES NOT tell us:
« How many people are sick

* Differences between sites (can't directly compare concentrations)
« Differences between pathogens at a site (can't directly compare concentrations)

Photos by Alex Garcia

Wastewater data should always be interpreted alongside other reliable public
health metrics, like hospitalization rates.

Northwestern




Relating RNA in Wastewater to public health
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Relating RNA Iin Wastewater to public health
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Relating RNA Iin Wastewater to public health
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Relating RNA in Wastewater to public health

Lab process error model
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Relating RNA Iin Wastewater to public health

3 PRECIPITATION ngggxs E Lab processes anS:Iry“ZZ'j o
\ reported as
A

GC/L

Simple
Models?

1 P

f RESIDENTIAL Person is
§ L tested or
AT — =
g TTPRTROROR0H ependent on hospitalized
g Sick individuals (grey) il symptomology & COVID & data
> contribute viral RNA j .

attitude reported to

DPH

WWTP: Waste Water Treatment Plant

Northwestern




Relating RNA in Wastewater to public health
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SARS-Cov2 RNA Data from Wastewater
Catchment Areas
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SARS-Cov2 RNA Data from Wastewater
Catchment Areas
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Punchline: RNA measurements in wastewater
correlate with other public health indicators

Average Weekly Percent Change in Corrected Wastewater
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Over the course of outbreak dynamics! Specifically in capturing new surges!

Modeling improves these correlations.
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Model development and selection pipeline

\\

~

4 CHOOSE

( 1. Most General Wastewater
Model
(prev) =
(SARS-CoV-2)*(flow)?(const)
(PMMoV)P(BCoV recovery)©

> |nclude terms based on available
data
> Include additional parameter for

time lag
o v

/2. Prevalence Estimates

> Multiple indicators: cases, test
positivity, hosp adm, beds-in-use

> Apply smoothing (7-day rolling
ave)

> De-lag (align peaks)

— admissions Thank you CDPH & IDPH for

~ beds-in-use

e e working with us on epi-data
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Model development and selection pipeline

4 CHOOSE b el . -
T Ty TR r—— Dimensional/Physical analysis
Model (prevalence [infected people/total people|)
(prev) =

(SARS-CoV-2)*(flow)?(const)
(PMMoV)P(BCoV recovery)©

B (measured viral concentration [GC/L]) (daily sewage volume [L])
 (viral shedding [GC/infected person]) (viral recovery rate [%]) (contributing population [total people])

> |nclude terms based on available
data
> Include additional parameter for

time lag
o v

/2. Prevalence Estimates

> Multiple indicators: cases, test
positivity, hosp adm, beds-in-use

> Apply smoothing (7-day rolling
ave)

> De-lag (align peaks) cases

admissions
~ beds-in-use
— -
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O Pt e Y
03/21 06/21
9 Date )
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Model development and selection pipeline

4 CHOOSE b el . -
T Ty TR r—— Dimensional/Physical analysis
Model (prevalence [infected people/total people|)
(prev) =

(SARS-CoV-2)*(flow)?(const)
(PMMoV)P(BCoV recovery)©

B (measured viral concentration [GC/L]) (daily sewage volume [L])
 (viral shedding [GC/infected person]) (viral recovery rate [%]) (contributing population [total people])

> |nclude terms based on available
data
> Include additional parameter for

| fimelag ) Want to estimate terms based on measured:

/2. Prevalence Estimates
Lab recovery control

attenuated bovine
coronavirus

N1 SARS-CoV2 RNA
extracted from

> Multiple indicators: cases, test
positivity, hosp adm, beds-in-use
> Apply smoothing (7-day rolling

ave)
> De-lag (align peaks) — cases WW Sample (BCOV)
L e
i e, ‘ Fecal load indicator Flow rate
L PEE  Date WA )) N Pepper mild mottle virus at WWTP
W, (PMMoV)

Northwestern




Model development and selection pipeline

(prevalence [infected people/total people])

~ Flow rate
% Fownate

(measured viral concentration [GC/L]) (daily sewage volume [L])

(viral shedding [GC/infected person|) (viral recovery rate [%]) (contributing population [total people])

(Nl recwery) : (BCOV FECWEW)Q (N1 recovery) =~ (I‘Scov;‘y)“
B
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Model development and selection pipeline

= Floowhw rm=at e

~ Flow rate
% Fownate

(measured viral concentration [GC/L]) (daily sewage volume [L])

(viral shedding [GC/infected person|) (viral recovery rate [%]) (contributing population [total people])

(Nl recwery) v (BCOV FECWEW)Q (N1 recovery) =~ (I‘Scove:ry)“

(measured PMMoV [GC/L]) (daily sewage volume [L])
(PMMoV shedding rate [GC/person]) (PMMoV recovery rate [%])

(population from PMMoV [people]) =

Northwestern




Model development and selection pipeline

4 CHOOSE

\\

( 1. Most General Wastewater
Model
(prev) =
(SARS-CoV-2)*(flow)?(const)
(PMMoV)P(BCoV recovery)©

> |nclude terms based on available
data
> Include additional parameter for

time lag
o

~

/2. Prevalence Estimates

> Multiple indicators: cases, test
positivity, hosp adm, beds-in-use

> Apply smoothing (7-day rolling
ave)

> De-lag (align peaks) cases

admissions
~ beds-in-use
— -
> ‘ =3
D i
o | -
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03/21 06/21
9 Date )
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= Floowhw rm=at e

~ Flow rate

T = (Ao

B (measured viral concentration [GC/L]) (daily sewage volume [L])
 (viral shedding [GC/infected person]) (viral recovery rate [%]) (contributing population [total people])

/

(N1 recovery) =~ (BCoV recovery)®

_ ~ Flow rate
wﬁ o

W w b m = - —a m -

~ constant ’

(PMMoV recovery) ~ (BCoV recovery)”
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Model development and selection pipeline

4 CHOOSE

\\

( 1. Most General Wastewater
Model
(prev) =
(SARS-CoV-2)*(flow)?(const)
(PMMoV)P(BCoV recovery)©

> |nclude terms based on available
data
> Include additional parameter for

time lag
o

~

/2. Prevalence Estimates

> Multiple indicators: cases, test
positivity, hosp adm, beds-in-use

> Apply smoothing (7-day rolling
ave)

* De. .
De-lag (align peaks) cases

admissions
~ beds-in-use

= Floowhw rm=at e

~ Flow rate

B (measured viral concentration [GC/L]) (daily sewage volume [L])
 (viral shedding [GC/infected person]) (viral recovery rate [%]) (contributing population [total people])

/

(N1 recovery) =~ (BCoV recovery)®

_ ~ Flow rate
wﬁ o

W w b m = - —a m -

~ constant ’

L

(SARS-CoV-2)(flow)¢

(PMMoV recovery) ~ (BCoV recovery)”

S~

o

prev =

(constant)

(PMMoV)?(BCoV recovery)®

®

W

—i
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Model development and selection pipeline

\\

4 CHOOSE
( 1. Most General Wastewater )
Model
(prev) =

(SARS-CoV-2)*(flow)?(const)
(PMMoV)P(BCoV recovery)©

> |nclude terms based on available
data
> Include additional parameter for

time lag
o

/2. Prevalence Estimates

> Multiple indicators: cases, test
positivity, hosp adm, beds-in-use

> Apply smoothing (7-day rolling
ave)

> De-lag (align peaks) cases

admissions
~ beds-in-use
— -
> ‘ =3
D ?
o | -
D_ Zp —sud — — = -
03/21 06/21
Date

f FIT

/3. Select Submodels

> Choose specific sub-models,

~

~

eg.
~ (SARS-CoV-2)(const)
(prev) = (PMMoV)
( ) (SARS-CoV-2)*(const)
prev) =

(BCoV recovery)©

> Wastewater lag parameter
range: -10 to 10 days offset
from test date

> Determine reasonable lags
for each prev estimate

e .
4. Fit Model Parameters
> Fit each combination of
model, lag, prevalence
estimate separately

B
[

L
[§]

o
o

log(prev
indicator)

06 12 18

log(modeled wastewater)

/

/
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Model development and selection pipeline

4 CHOOSE

\\

( 1. Most General Wastewater
Model
(prev) =
(SARS-CoV-2)*(flow)?(const)
(PMMoV)P(BCoV recovery)©

> |nclude terms based on available
data
> Include additional parameter for

time lag
o

~

/2. Prevalence Estimates

> Multiple indicators: cases, test
positivity, hosp adm, beds-in-use

> Apply smoothing (7-day rolling
ave)

* De. .
De-lag (align peaks) cases

admissions
~ beds-in-use

f FIT b

/3. Select Submodels N

> Choose specific sub-models,

eg.
~ (SARS-CoV-2)(const)
(prev) = (PMMoV)
( ) (SARS-CoV-2)*(const)
prev) =

(BCoV recovery)©

> Wastewater lag parameter
range: -10 to 10 days offset
from test date

> Determine reasonable lags
for each prev estimate

/4. Fit Model Parameters

> Fit each combination of
model, lag, prevalence
estimate separately

log(prev
indicator)

06 12 18

log(modeled wastewater)

Power-law Models:

No additional
terms

Correct with
flow rate only

Correct with
PMMoV only

Correct with

BCoV only

Correct with
BCoV and
flow rate

Correct with
BCoV and
PMMoV

Correct with
PMMoV.
BCoV, and
flow rate

prev = (const) (N )"

prev = (const) (V)" [}._"ltm')”l

{_\-1 }u
(PMMoV)"

prev = (const)

(Vy)"

prev = [const ) ———
(BCoV recovery)

(N,)" (Flow)"

prev = [const ) —————————
(BCoV recovery)

{-\-1 }u
{I’.\I}.Iu\r)h (BCoV recovery)”

prev = (const)

(V)® (Flow)?
( P.\If\[u\r]h (BCoV recovery)”

prev = (const)
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Model development and selection pipeline

\\

4 CHOOSE
( 1. Most General Wastewater
Model
(prev) =

(SARS-CoV-2)*(flow)?(const)
(PMMoV)P(BCoV recovery)©

> |nclude terms based on available

data
> Include additional parameter for

time lag
o

~

/2. Prevalence Estimates

> Multiple indicators: cases, test
positivity, hosp adm, beds-in-use

> Apply smoothing (7-day rolling
ave)

> De-lag (align peaks)

- cases
admissions
~ beds-in-use
— -

> ‘ =3

D ?

o | -

D_ Zp —sud — — = -

03/21 06/21
9 Date
N\

f FIT b

/3. Select Submodels N

> Choose specific sub-models,

eg.
~ (SARS-CoV-2)(const)
(prev) = (PMMoV)
( ) (SARS-CoV-2)*(const)
prev) =

(BCoV recovery)©

> Wastewater lag parameter
range: -10 to 10 days offset
from test date

> Determine reasonable lags
for each prev estimate

/4. Fit Model Parameters

> Fit each combination of
model, lag, prevalence
estimate separately

B
[

L
[§]

o
o

log(prev
indicator)

06 12 18

log(modeled wastewater)

/

Power-law Models:

No additional
terms

Correct with
flow rate only

Correct with
PMMoV only

Correct with
BCoV only

Correct with
BCoV and
flow rate

Correct with
BCoV and
PMMoV

Correct with
PMMoV.
BCoV, and
flow rate

prev = (const) (N )"

Non-Power-law Models:

Set powers
a,b,c,d ={0, 1}

prev = (const) (V)" [}._"ltm')”l

Similar to commonly

(V1)° used normalization
(PMMoV)"

prev = (const)

(Vy)"

prev = [const ) ———
(BCoV recovery)

(N,)" (Flow)"

prev = [const ) —————————
(BCoV recovery)

{-\-1 }u
{I’.\I}.Iu\r)h (BCoV recovery)”

prev = (const)

(V)® (Flow)?
( P.\If\[u\r]h (BCoV recovery)”

prev = (const)
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Model development and selection pipeline

4 CHOOSE

\\

( 1. Most General Wastewater
Model
(prev) =
(SARS-CoV-2)*(flow)?(const)
(PMMoV)P(BCoV recovery)©

> |nclude terms based on available
data
> Include additional parameter for

time lag
o

~

/2. Prevalence Estimates

> Multiple indicators: cases, test
positivity, hosp adm, beds-in-use

> Apply smoothing (7-day rolling
ave)

* De. .
De-lag (align peaks) cases

admissions
~ beds-in-use

f FIT b
S

/3. Select Submodels

> Choose specific sub-models,

eg.

~ (SARS-CoV-2)(const)
(prev) = (PMMoV)
( ) (SARS-CoV-2)*(const)
prev) =

(BCoV recovery)©

> Wastewater lag parameter
range: -10 to 10 days offset
from test date

> Determine reasonable lags
for each prev estimate

/4. Fit Model Parameters

> Fit each combination of
model, lag, prevalence
estimate separately

B
[

L
[§]

o
o

log(prev
indicator)

06 12 18

log(modeled wastewater)

/

4 EVALUATE b
/5- Downselect Relative AIC for A
> Calculate relative AIC for all  ne prev eslimate
model - lag combinations : 2 23
within each prev estimate i) o §§
> Eliminate models that i E
consistently have relative i B
AIC > 20 ol =
> Keep range of lags foreach | =
prevalence estimate with .
relative AIC<10 for any model = 3 ”
> Be careful of less trustworthy - &2
prevalence estimates - _ °&E
\_ (i.e. cases) Model )
" 6. Check A
> Are optimal lags within a reasonable range?
> How different are the parameter values for different
lags and models?
> Evaluate parameter signs with possible
interpretation
> Evaluate performance of best models for desired
outputs (e.g. correlation, trend analysis)
> -
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Finding parsimonious models: Akaike information criteria

A

O

LZhor
@
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Finding parsimonious models: Akaike information criteria

A <,
® - \
> ° ® zJ\A\ s
Q 0 \\) /‘\?'ﬁ« ,\.((WS
L ® <
)
Ll () 2 © ® I Relative AIC may
e & & , Q O indicate support for
s more\than 1 model
- —X
# o Jevms +# of }ernS
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Model ranking and recommendations

700 "power law"
models with BCoV
35
600 30-
251
O
500 <
o 201
=
4+
'®) % 151
< 400 o
2:) 10+
=
5 5
o 300
foa 0 > > > w
3 033 N32 ®E
] nNE&m O [
2001 (%2 m E =
County-level
Beds In Use
1001 —— Local TPR
Local Hospital
—— . .
Admissions F )J
01 Local Cases ==~
o~ o o~ o - 0
g @) 3 2 3 Q 3 3 3 2 B> £
= n = o> O n = = O o> 53 =
; s —g @ ;= % g as 2
N o o > N a o o N —
0 ~ & Q 0 ~ Q by oo ©
(@] v Q wv 0
wn wn
Basic Models Power Law Models
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Model ranking and recommendations

700 "power law"
35 models with BCoV Always ranked best!
® =
Correct with
o 2] PMMoV. (Flow)"
= S prev = (const) .
5001 i 201 BCoV, and {I‘l[:‘nlu’u ]I [B(.cﬁ; recovery )’
> flow rate I
9 N
< 400 & "
) 10
> .
= 5| Also better than nothing:
o 300 —
o 0 P i ;
i3 ~NZ3 .5% — E Correct with "LQ (N)° “
a3 Ae R O 3 % ® g BCoV and prev = (const)=— % h'l'—l_
200 "oz = PMMoV (PMMoV) (BCoV recovery)
County-level
Beds In Use , , .
100 Local TPR Correct with prev = (const) (V1) LRI
i BCoV only - (BCoV recovery)” L
Local Hospital
Admissions X
01 Local Cases in=—— == ’J Correct with (N,)* (Flow)®
BCoV and prev = (const) B 1;__ ——— G
?, S % 2 % L‘\I) g % % = % > g flow rate \Blo} recovery
= v} s o> Q i = = ] o> =
: s =8 @ . 5 @ =38 @2 8
N a ~N n N a - ~N N = .. .
Q <~ 97 0O Q 5 O 9% 4F 0T Limited improvement:
3 ? g »
Basic Models Power Law Models Flow rate only &? PMMoV only
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ranking and lag

* Best models are within

* Robust across prevalence

e Cases is less reliable
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RNA In wastewater correlates with
hospitalization data

Stickney
100 - hospital admissions
. 50 +  wastewater; uncorrected
0 .
*c;s e . , = wastewater; best fit model
A N A Ll As A
g 0 2020-11 2021-01 2021-03 2021-05 2021-07 2021-09 2021-11 2022-01
S
< * Power-law model improves
r 100 .
8 overall correlation by 4-15%
@ 50
C
S
a o
£ e Extend to other locations?
< O'Brien
o 100
2
(o]
T 50
0 202011 202101 202103 202105 2021.07 2021.09 2021.11 2022.01

Date
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RNA In wastewater correlates with
hospitalization data

Stickney
100 1.0
training set
E)' >0 z": 4 *
© - - ™ /v‘ e 5 *
; 0 A : a s : ‘.. - . AA A ; . 0.8 x ﬂ’ “ § *
% 2020-11 2021-01 2021-03 2021-05 2021-07 2021-09 2021-11 2022-01 ®
8
§ Calumet c
8 '8 0.6
< 100 % 4
a 5
v 50 004
C
o
a .
'g 0.2
< O'Brien Y Corrected Wastewater
o 100 $3 Raw SARS-CoV-2
§ 00 S & & S & ¢
o O < & O n @
L 50 %{)Cl- » o < Q@O
0 2020-11 2021-01 2021-03 2021-05 2021- 2021-09 2021-11 2022-01

Date
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50

251

50

;It\verage Weekly Percent Change in Hospita, Admissions
o o

RNA In wastewater detects all major surges

SUCkney
x Wastewater W w W W Wx A W
- Hosp Adm { bV A ; | ¥ '\ |
. x.;'-"-o ’f’s‘x .\"- % X '\/::"xx’&xx* ..-" .“_;;‘/":x x“)Z(XX
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50

=50

1200
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r—100
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1100

r—100

Average Weekly Percent Change in Corrected Wastewater

4-week trend analysis
* Hospital admissions
* RNA detected in wastewater

Likely increase indicates >66%
confidence of increasing slope

Likely increase indicates >66%
confidence of decreasing slope

Uncertain is <66% confidence in
slope change
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RNA In wastewater detects all major surges
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Average Weekly Percent Change in Corrected Wastewater

* Trend analysis identifies 18

likely increase in RNA
wastewater measurements

RNA in wastewater identifies
all 9 major surges
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RNA In wastewater detects all major surges
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Average Weekly Percent Change in Corrected Wastewater

Trend analysis identifies 18
likely increase in RNA
wastewater measurements

RNA in wastewater identifies all
9 major surges

4 other likely increases in RNA
wastewater correspond to

increase in other indicators

5 unsupported likely increases
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Punchline: RNA measurements in wastewater
correlate with other public health indicators

Stickney
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Over the course of outbreak dynamics! Specifically in capturing new surges!

Modeling improves these correlations & has been integrated into our public health reporting
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GC/person/day
H [0)] (o0}

Model-Corrected
RNA in wastewater
© © o o o

o N

Transfer Model to high-throughput data

1e9 Calumet WRP
Oct 21 Dec 16 Mar 02 Nov 01 Jan 01 Apr 10 May 22 Aug 07 May 30
2020 2020 2021 2021 * 2022 2022 2022 2022 * manual+gPCR data 2023
small plants oo small plants small plants automated+dPCR data
" ) 2.x/week ) o Je 2x/week . 3x/week
large plants ® %° large plants large plants large plants
° . | 2x/week Y gl e 1 _3x/wk. _  5x/week | 3x/week
° @
°, ° o. @ = Q. © w%o ° ¢
> ) .. ° ° :‘ O. o o : . %:’.l @ ® ﬁ; ° .
o o’ Ve . %% ° ° & i e e@@&‘:“ @ e ©
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Low-throughput

=)

* by hand
* gPCR quantification
* lower sensitivity

Larger sample
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Date

High-throughput

* Robots

* dPCR quantificati
* higher sensitivity
* Smaller sample
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Transfer Model to high-throughput data
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Model-Corrected
RNA in wastewater
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Transfer Model to high-throughput data

Northwestern

1e9 Calumet WRP
Oct 21 Dec 16 Mar 02 Nov 01 Jan 01 Apr 10 May 22 Aug 07 May 30
2020 2020 2021 2021 * 2022 2022 2022 2022 * manual+gPCR data 2023
small plants oo small plants small plants * automated+dPCR data
" 2.x/week o J2 2x/week | 3x/week
large plants i % large plants large plants large plants
s - 2x/week s = |_3x/wk_ _  5x/week 3x/week
°, .o. ..‘.o 0:’" o, ‘.
o o. .c. . .:\o .0. . - ‘.‘~.: ° ~e° :' ®e o é NO:..' R .
o o .. A 2 t..o... © - ..s. * & .0.' .;’:;‘ = .ﬁ~”ﬁ.‘.$w’Ms,~,:’,‘f.dl * W.“W:.\'.‘w o~
2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 2023-05
Date
"power_ law"
1000 - models with BCoV
1.0
125
800 9]
| o8| * ¥ % 5 *x
0 O
i 600 < S . ' .
: = %
< 400 Y v “
" §F 0§ "i| 5041 8
County-level S Y% Model-Corrected SARS-CoV-2 O
200 Bedeln Use (O original PMMoV-Normalized
Local Hospital
Admissions 02 8 Raw SARS-CoV-2
—s=— Local Cases \
0 Local TPR BN “
0-0— . & . o
LA IR S E R A ¢ & &£ & RS
» O Q ; ® O v - NE® o < < (o) o L
& o o 0 99 . C{- \\) ) \2 o (0
& ) N > @) > \/0
Basic Models Power Law Models (’) </ ‘z‘




=
o

Model-Corrected
RNA in wastewater
GC/person/day

H [e)] (0]

© © © © ©

o N

Transfer Model to high-throughput data
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Transfer Model to high-throughput data
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Current/Future work: improve modeling
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WWTP: Waste Water Treatment Plant
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Thank you!
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