

Metropolitan Water Reclamation District of Greater Chicago

CECIL LUE-HING RESEARCH AND DEVELOPMENT COMPLEX 6001 WEST PERSHING ROAD CICERO, ILLINOIS 60804-4112

Edward W. Podczerwinski, P.E. Director of Monitoring and Research

August 12, 2021

Ms. Catherine Siders Illinois Environmental Protection Agency Bureau of Water DWPC Compliance Section #19 1021 North Grand Avenue East P.O. Box 19276 Springfield, Illinois 62794-9274

Dear Ms. Siders:

Subject: Lawndale Avenue Solids Management Area - Stickney Water Reclamation Plant, Illinois Environmental Protection Agency Permit No. 2020-AO-64903, Monitoring Report for April, May, and June 2021

The attached tables contain the monitoring data for the Lawndale Avenue Solids Management Area for April, May, and June 2021 as required by Illinois Environmental Protection Agency (IEPA) Operating Permit No. 2020-AO-64903. Biosolids were placed in the solids drying area in April, May, and June 2021.

<u> Table 1</u>	Analysis of Water from Monitoring Wells M-11 through M-15 at the Lawndale
	Avenue Solids Management Area Sampled on June 2, 2021.

- Table 2Analysis of Water from Lysimeters L-1N through L-9N at the Lawndale AvenueSolids Management Area Sampled on May 13, 2021.
- Table 3Analysis of Biosolids Placed in the Lawndale Avenue Solids Management AreaDuring April, May, and June 2021.

Very truly yours,

Albert Con

Albert Cox Environmental Monitoring and Research Manager Monitoring and Research Department

AC:BM:lfAttachmentscc: Mr. J. Patel, IEPA/Mr. T. Bennett, IEPAMr. B. Fleming, IEPA/Dr. H. Zhang

BOARD OF COMMISSIONERS

Kari K. Steele President Barbara J. McGowan Vice President Marcelino Garcia Chairman of Finance Cameron Davis Kimberly Du Buclet Josina Morita Eira L. Corral Sepúlveda Debra Shore Mariyana T. Spyropoulos

LAWNDALE AVENUE SOLIDS MANAGEMENT AREA

MONITORING REPORT FOR

SECOND QUARTER 2021

Monitoring and Research Department Edward W. Podczerwinski, Director

August 2021

	Monitoring Well No.					
Parameter	M-11	M-12	M-13	M-14	M-15	
рН	7.1	7.5	7.4 mg L ⁻¹	7.4	7.1	
Cl SO4	21 194	14 352	10 647	10 127	9 823	
NO ₂ ⁻ +NO ₃ ⁻ -N	< 0.25	<0.25	< 0.25	<0.25	< 0.25	

TABLE 1: ANALYSIS OF WATER FROM MONITORING WELLS M-11 THROUGH M-15 AT THE LAWNDALE AVENUE SOLIDS MANAGEMENT AREA SAMPLED ON JUNE 2, 2021

Lysimeter No.								
L-1N	L-2N	L-3N	L-4N	L-5N	L-6N	L-7N	L-8N	L-9N
7.2	7.2	7.4	6.9	7.0	6.8	8.0	7.7	6.9
				mg L ⁻¹ -				
17	223	130	22	542	43	370	326	333
715	153	50	1,360	1,555	1,252	12	126	165
0.31	5.3	0.86	0.63	1.1	< 0.25	1.3	0.67	0.28
	7.2 17 715	7.2 7.2 17 223 715 153	7.2 7.2 7.4 17 223 130 715 153 50	L-1N L-2N L-3N L-4N 7.2 7.2 7.4 6.9 17 223 130 22 715 153 50 1,360	L-1N L-2N L-3N L-4N L-5N 7.2 7.2 7.4 6.9 7.0	L-1N L-2N L-3N L-4N L-5N L-6N 7.2 7.2 7.4 6.9 7.0 6.8 mg L ⁻¹ 17 223 130 22 542 43 715 153 50 1,360 1,555 1,252	L-1N L-2N L-3N L-4N L-5N L-6N L-7N 7.2 7.2 7.4 6.9 7.0 6.8 8.0 mg L ⁻¹ 17 223 130 22 542 43 370 715 153 50 1,360 1,555 1,252 12	L-1N L-2N L-3N L-4N L-5N L-6N L-7N L-8N 7.2 7.2 7.4 6.9 7.0 6.8 8.0 7.7 mg L ⁻¹ 17 223 130 22 542 43 370 326 715 153 50 1,360 1,555 1,252 12 126

TABLE 2: ANALYSIS OF WATER FROM LYSIMETERS L-1N THROUGH L-9N AT THE LAWNDALE AVENUE SOLIDS MANAGEMENT AREA SAMPLED ON MAY 13, 2021

TABLE 3: ANALYSIS OF BIOSOLIDS PLACED IN THE LAWNDALE AVENUE SOLIDSMANAGEMENT AREA DURING APRIL, MAY, AND JUNE 2021

Parameter	April	May	June
рН	7.8	7.5 	7.6
Total Solids Total Volatile Solids	14.0 47.2	16.7 42.5	13.4 42.3

¹Total volatile solids as a percentage of total solids.